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Problem setting

Unrelated machine restricted assignment setting

Input: J: jobs
M: machines
pi ,j : the processing time of job j on machine i
Mj : {i ∈ M : pi ,j <∞} permissible machines for job j

Output: σ : J 7→ M: assignments of jobs J on all the machine M
minimize maxi∈M{

∑
j∈σ−1(i) pi ,j}

I offline setting: {pi ,j} are given upfront.

I online setting: {pi ,j} are revealed when job j arrives. The online
algorithm is required to irrevocably assign job to a machine upon its
arrival.
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Problem setting

Identical machine restricted assignment setting (Online)

Input: M: machines J: jobs
pi ,j : the processing time of job j on machine i . pi ,j ∈ {pj ,∞}

Output: σ : J 7→ M: assignments of jobs J on all the machine M
minimize maxi∈M{

∑
j∈σ−1(i) pi ,j}

I Denoted as P|restricted.

I [Azar et al, Aspnes et al.]:
tight O(logm)-competitive ratio.f



Unrelated machine restricted assignment setting with
learned weights

learning augmented online algorithm

Using machine learned predictions to design algorithms for online
combinatorial optimization problems.

Proportional Allocation Scheme of [Agrawal et al] for P|restricted

I Recall P|restricted setting : pi ,j ∈ {pj ,∞}
I Mj : i ∈ Mj iff pi ,j = pj
I Given w ∈ RM

≥0, define

x
(w)
i ,j =

{
wi

w(Mj )
if i ∈ Mj

0 otherwise

I [Agrawal et al]: there exists w such that x (w) is (1 + ε)-approximate
solution to LP (Primal).
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Known results

Known Results (with learned weights)

I [Agrawal et al, 2018]: (1 + ε)-approximately optimum to LP (Primal).
for P|restricted

I [Lattanzi et al, 2020] For P|restricted setting, with some predicted
weight vector w ∈ RM

≥0:

upper bound lower bound

deterministic Ω
(

log m
log log m

)
randomized O(log3 logm) Ω

(
log log m

log log log m

)

Known Results (without learned weights)

[[Azar et al, Aspnes et al.] tight O(logm)-competitive ratio.
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Our results

I Main Result: For general unrelated machine model, with a predicted
dual vector β ∈ RM

≥0, and a weight vector w ∈ RM
≥0, online algorithms

achieve tight bounds:

upper bound lower bound

deterministic O
(

log m
log log m

)
Ω
(

log m
log log m

)
randomized O

(
log log m

log log log m

)
Ω
(

log log m
log log log m

)
I Algorithms are robust.

I Prediction (β,w) is learnable by seeing a few past instances, under
the model of [Lavastida et al.]
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Our techniques for main result

1. We introduce an intermediate setting called related machine
restricted assignment setting (Q|restricted).

2. We prove that proportional allocation scheme of [Agrawal et al] also
works for Q|restricted setting (easy).

3. We apply Primal-Dual techinque to reduce general setting to
Q|restricted setting.

P|restricted

proportional allocation scheme

general
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Frame Title

We design:

1. deterministic O
(

log m
log log m

)
-approximate online rounding algorithm

2. randomized O
(

log log m
log log log m

)
-approximate online rounding algorithm
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Related machine restricted assignment setting

Q|restricted
Input: J: jobs

M: machines
pj : intrinsic processing time of job j
si ∈ R>0: speed of machine i
pi ,j ∈ {

pj
si
,∞}: the processing time of job j on machine i .

Output: σ : J 7→ M: assignments of jobs J on all the machine M
minimize maxi∈M{

∑
j∈σ−1(i) pi ,j}

- identical machine restricted assignment setting
(P|restricted): pi ,j ∈ {pj ,∞},∀i , j

- related machine restricted assignment setting

(Q|restricted): pi ,j ∈
{

pj
si
,∞
}
,∀i , j

- unrelated machine restricted assignment setting
(general): pi ,j ∈ [0,∞], ∀i , j
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Related machine restricted assignment setting

Q|restricted
Input: J: jobs

M: machines
pj : intrinsic processing time of job j
si ∈ R>0: speed of machine i
pi ,j ∈ {

pj
si
,∞}: the processing time of job j on machine i .

Output: σ : J 7→ M: assignments of jobs J on all the machine M
minimize maxi∈M{

∑
j∈σ−1(i) pi ,j}

Lemma

A slight modified version of proportional allocation scheme of [Agrawal et
al] works for Q|restricted setting. (easy)

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing with Predictions RevisitedICML 2021 10 / 16



Road map

P|restricted

proportional allocation scheme

generalQ|restricted

intermediate setting
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Primal and Dual LPs (unrelated machine model)

min T ′ (Primal)∑
i∈Mj

xi ,j = 1 ∀j ∈ J (1)∑
j∈Ji pi ,jxi ,j ≤ T ′ ∀i ∈ M (2)

xi ,j ≥ 0 ∀i , j (3)

max
∑

j∈J αj (Dual)

αj − pi ,jβi ≤ 0 ∀i , j (4)∑
i∈M

βi = 1 (5)

βi ≥ 0 ∀i ∈ M (6)

I βi : per-unit-time cost of using machine i (→ si : speed i )

I αj = mini pi ,jβi : minimum cost of processing j (→ pj)

I Due to (5),
∑

j αj lower bounds the makespan
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Proof of Theorem using Dual
max

∑
j∈J αj (Dual)

αj − pi ,jβi ≤ 0 ∀i , j (7)∑
i∈M

βi = 1 (8)

βi ≥ 0 ∀i ∈ M (9)

Main theorem

There is a vector β ∈ RM
>0, given which the general instance is reduced to

a Q|restricted instance.

I let (α, β) be optimum dual solution

I complementary slackness:
xi ,j > 0 ⇒ αj = mini pi ,jβi ⇒ αj = pi ,jβi ⇔ pi ,j =

αj

βi
.

I pj := αj be size of j , si := βi be speed of i .

I pi ,j >
pj
si
⇒ xi ,j = 0 ⇒ set pi ,j =∞.

I In practical, α, β could be zero. pi ,j > (1 + ε)
pj
si
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Deterministic O
(

logm
log logm

)
-Approx. Online Rounding

I Independent rounding ⇒ O
(

log m
log log m

)
-approx.

I Derandomization using conditional expectation leads a deterministic
rounding algorithm.

Minimize conditional expectation

Suppose we have the expectation of makespan Φt−1 before time t,
When job t arrives, we assign it to a machine i ∈ Mt to minimize the
expectation of makespan Φt at time t

on condition of makespan at time
t − 1

.
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Randomized O
(

log logm
log log logm

)
-Approx. Online Rounding

I greatly simplified [Lattanzi et al]

1. random assignment for small jobs (
∑

pi,j<
T ′

log m

xi ,j <
1
2 )

2. attempt to randomly assign big jobs, if the load of machine too
large, job fails

3. graph induced by failed big jobs have O(logO(1) m)-sized connected
components

4. using deterministic rounding algorithm for failed jobs
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large, job fails

3. graph induced by failed big jobs have O(logO(1) m)-sized connected
components
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Thank you for your time.
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