Online Unrelated Machine Load Balanceing with Predictions Revisited

Shi Li ¹² Jiayi Xian¹² (presentor)

¹Computer Sciense Department, University at Buffalo ²equal contribution

ICML, July 2021

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

ICML 2021 1 / 16

Outline

Introduction

- Problem settings
 - Unrelated machine restricted assignment setting
 - Identical machine restricted assignment setting
 - Scheduling problem with prediction
- Known results

2 Techniques

- Primal Dual
- Rounding algorithms

Unrelated machine restricted assignment setting

Input: J: jobs M: machines $p_{i,j}$: the processing time of job j on machine i M_j : $\{i \in M : p_{i,j} < \infty\}$ permissible machines for job j **Output:** $\sigma : J \mapsto M$: assignments of jobs J on all the machine M minimize $\max_{i \in M} \{\sum_{j \in \sigma^{-1}(i)} p_{i,j}\}$

Unrelated machine restricted assignment setting

▲□> ▲圖> ▲理> ▲理> 三世 ----

• offline setting: $\{p_{i,j}\}$ are given upfront.

Unrelated machine restricted assignment setting

- offline setting: $\{p_{i,j}\}$ are given upfront.
- online setting: {p_{i,j}} are revealed when job j arrives. The online algorithm is required to irrevocably assign job to a machine upon its arrival.

Identical machine restricted assignment setting (Online)

Input: *M*: machines *J*: jobs $p_{i,j}$: the processing time of job *j* on machine *i*. $p_{i,j} \in \{p_j, \infty\}$ **Output:** $\sigma : J \mapsto M$: assignments of jobs *J* on all the machine *M* minimize $\max_{i \in M} \{\sum_{j \in \sigma^{-1}(i)} p_{i,j}\}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Denoted as P|restricted.
- [Azar et al, Aspnes et al.]: tight O(log m)-competitive ratio.f

learning augmented online algorithm

Using machine learned predictions to design algorithms for online combinatorial optimization problems.

learning augmented online algorithm

Using machine learned predictions to design algorithms for online combinatorial optimization problems.

Proportional Allocation Scheme of [Agrawal et al] for $\mathsf{P}|\mathrm{restricted}$

▶ Recall P|restricted setting : $p_{i,j} \in \{p_j, \infty\}$

$$\blacktriangleright \quad M_j : i \in M_j \text{ iff } p_{i,j} = p_j$$

learning augmented online algorithm

Using machine learned predictions to design algorithms for online combinatorial optimization problems.

Proportional Allocation Scheme of [Agrawal et al] for $\mathsf{P}|\mathrm{restricted}$

▶ Recall P|restricted setting : $p_{i,j} \in \{p_j, \infty\}$

$$\blacktriangleright \quad M_j : i \in M_j \text{ iff } p_{i,j} = p_j$$

• Given $w \in \mathbb{R}^{M}_{\geq 0}$, define

$$x_{i,j}^{(w)} = egin{cases} rac{w_i}{w(M_j)} & ext{if } i \in M_j \ 0 & ext{otherwise} \end{cases}$$

learning augmented online algorithm

Using machine learned predictions to design algorithms for online combinatorial optimization problems.

Proportional Allocation Scheme of [Agrawal et al] for $\mathsf{P}|\mathrm{restricted}$

▶ Recall $\mathsf{P}|$ restricted setting : $p_{i,j} \in \{p_j, \infty\}$

$$\blacktriangleright \quad M_j : i \in M_j \text{ iff } p_{i,j} = p_j$$

• Given $w \in \mathbb{R}^{M}_{\geq 0}$, define

$$\mathbf{x}_{i,j}^{(w)} = egin{cases} rac{w_i}{w(M_j)} & ext{if } i \in M_j \ 0 & ext{otherwise} \end{cases}$$

[Agrawal et al]: there exists w such that x^(w) is (1 + ε)-approximate solution to LP (Primal).

Known results

Known Results (with learned weights)

[Agrawal et al, 2018]: (1 + ε)-approximately optimum to LP (Primal). for P|restricted

Known Results (without learned weights)

[[Azar et al, Aspnes et al.] tight $O(\log m)$ -competitive ratio.

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

ICML 2021 5 / 16

(日)

Known results

Known Results (with learned weights)

- [Agrawal et al, 2018]: (1 + ε)-approximately optimum to LP (Primal). for P|restricted
- ► [Lattanzi et al, 2020] For P|restricted setting, with some predicted weight vector w ∈ ℝ^M_{≥0}:

	upper bound	lower bound
deterministic		$\Omega\left(\frac{\log m}{\log\log m}\right)$
randomized	$O(\log^3 \log m)$	$\Omega\left(\frac{\log\log m}{\log\log\log m}\right)$

Known Results (without learned weights)

[[Azar et al, Aspnes et al.] tight $O(\log m)$ -competitive ratio.

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

ICML 2021 5 / 16

(日)

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

メロト メポト メヨト メヨト

Main Result: For general unrelated machine model, with a predicted dual vector β ∈ ℝ^M_{≥0}, and a weight vector w ∈ ℝ^M_{≥0}, online algorithms achieve tight bounds:

	upper bound	lower bound
deterministic	$O\left(\frac{\log m}{\log\log m}\right)$	$\Omega\left(\frac{\log m}{\log\log m}\right)$
randomized	$O\left(\frac{\log\log m}{\log\log\log m}\right)$	$\Omega\left(\frac{\log\log m}{\log\log\log m}\right)$

Main Result: For general unrelated machine model, with a predicted dual vector β ∈ ℝ^M_{≥0}, and a weight vector w ∈ ℝ^M_{≥0}, online algorithms achieve tight bounds:

	upper bound	lower bound
deterministic	$O\left(\frac{\log m}{\log\log m}\right)$	$\Omega\left(\frac{\log m}{\log\log m}\right)$
randomized	$O\left(\frac{\log\log m}{\log\log\log m}\right)$	$\Omega\left(\frac{\log\log m}{\log\log\log m}\right)$

Algorithms are robust.

Main Result: For general unrelated machine model, with a predicted dual vector β ∈ ℝ^M_{≥0}, and a weight vector w ∈ ℝ^M_{≥0}, online algorithms achieve tight bounds:

	upper bound	lower bound
deterministic	$O\left(\frac{\log m}{\log\log m}\right)$	$\Omega\left(\frac{\log m}{\log\log m}\right)$
randomized	$O\left(\frac{\log\log m}{\log\log\log m}\right)$	$\Omega\left(\frac{\log\log m}{\log\log\log m}\right)$

- Algorithms are robust.
- Prediction (β, w) is learnable by seeing a few past instances, under the model of [Lavastida et al.]

general

7/16

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w ICML 2021

1. We introduce an intermediate setting called related machine restricted assignment setting (Q|restricted).

7/16

- 1. We introduce an intermediate setting called related machine restricted assignment setting (Q|restricted).
- 2. We prove that proportional allocation scheme of [Agrawal et al] also works for Q|restricted setting (easy).

- 1. We introduce an intermediate setting called related machine restricted assignment setting (Q|restricted).
- 2. We prove that proportional allocation scheme of [Agrawal et al] also works for Q|restricted setting (easy).
- 3. We apply Primal-Dual techinque to reduce general setting to Q|restricted setting.

We design:

- 1. deterministic $O\left(\frac{\log m}{\log \log m}\right)$ -approximate online rounding algorithm
- 2. randomized $O\left(\frac{\log \log m}{\log \log \log m}\right)$ -approximate online rounding algorithm

Related machine restricted assignment setting

$\mathsf{Q}|\mathrm{restricted}$

Related machine restricted assignment setting

$\mathsf{Q}|\mathrm{restricted}$

Input: J: jobs M: machines p_j : intrinsic processing time of job j $s_i \in \mathbb{R}_{>0}$: speed of machine i $p_{i,j} \in \{\frac{p_j}{s_i}, \infty\}$: the processing time of job j on machine i. **Output:** $\sigma : J \mapsto M$: assignments of jobs J on all the machine M minimize $\max_{i \in M} \{\sum_{i \in \sigma^{-1}(i)} p_{i,j}\}$

- identical machine restricted assignment setting (P|restricted): $p_{i,j} \in \{p_j, \infty\}, \forall i, j$
- related machine restricted assignment setting (Q|restricted): $p_{i,j} \in \left\{\frac{p_j}{s_i}, \infty\right\}, \forall i, j$
- unrelated machine restricted assignment setting (general): $p_{i,j} \in [0,\infty], \forall i,j$

超 とう きょう く ひょう しょう

Related machine restricted assignment setting

Lemma

A slight modified version of proportional allocation scheme of [Agrawal et al] works for Q|restricted setting. (easy)

ICML 2021 10 / 16

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

intermediate setting

Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

ICML 2021 11/16

• = • •

min	T'		(Primal)
$\sum_{i \in M_j} x_{i,j} = 1$		$\forall j \in J$	(1)
$\sum_{j\in J_i} p_{i,j} x_{i,j} \leq T'$		$\forall i \in M$	(2)
$x_{i,j} \geq 0$		$\forall i, j$	(3)
max	$\sum_{j\in J} \alpha_j$		(Dual)
$\alpha_j - p_{i,j}\beta_i \leq 0$		$\forall i, j$	(4)
$\sum_{i\in \mathcal{M}}\beta_i=1$			(5)
$\beta_i \geq 0$		$\forall i \in M$	(6)

ICML 2021 12/16

・ロト ・ 日 ト ・ ヨ ト ・

min	T'		(Primal)
$\sum_{i \in M_j} x_{i,j} = 1$		$\forall j \in J$	(1)
$\sum_{j\in J_i} p_{i,j} x_{i,j} \leq T'$		$\forall i \in M$	(2)
$x_{i,j} \geq 0$		$\forall i, j$	(3)
max	$\sum_{j\in J} \alpha_j$		(Dual)
$\alpha_j - p_{i,j}\beta_i \leq 0$		$\forall i, j$	(4)
$\sum_{i\in \mathcal{M}}\beta_i=1$			(5)
$eta_i \geq 0$		$\forall i \in M$	(6)

▶ β_i : per-unit-time cost of using machine *i* (→ s_i : speed *i*)

ICML 2021 12 / 16

< 口 > < 同 > < 三 > < 三

min	T'		(Primal)
$\sum_{i\in M_j} x_{i,j} = 1$		$\forall j \in J$	(1)
$\sum_{j\in J_i} p_{i,j} x_{i,j} \leq T'$		$\forall i \in M$	(2)
$x_{i,j} \geq 0$		$\forall i, j$	(3)
max	$\sum_{j\in J} \alpha_j$		(Dual)
$\alpha_j - p_{i,j}\beta_i \leq 0$		$\forall i, j$	(4)
$\sum_{i\in \mathcal{M}}\beta_i=1$			(5)
$eta_i \geq 0$		$\forall i \in M$	(6)

β_i: per-unit-time cost of using machine *i* (→ *s_i*: speed *i*)
 α_j = min_i *p_{i,j}β_i*: minimum cost of processing *j* (→ *p_j*)

・ 何 ト ・ ヨ ト ・ ヨ ト

min	T'		(Primal)
$\sum_{i\in M_j} x_{i,j} = 1$		$\forall j \in J$	(1)
$\sum_{j\in J_i} p_{i,j} x_{i,j} \leq T'$		$\forall i \in M$	(2)
$x_{i,j} \ge 0$		$\forall i, j$	(3)
max	$\sum_{j\in J} \alpha_j$		(Dual)
$\alpha_j - p_{i,j}\beta_i \leq 0$		$\forall i, j$	(4)
$\sum_{i\in \mathcal{M}}\beta_i=1$			(5)
$eta_i \geq 0$		$\forall i \in M$	(6)

β_i: per-unit-time cost of using machine i (→ s_i: speed i)
 α_j = min_i p_{i,j}β_i: minimum cost of processing j (→ p_j)
 Due to (5), Σ_j α_j lower bounds the makespan
 Shi Li, Jiayi Xian (University at Buffalo) Online Unrelated Machine Load Balanceing w

$$\max \sum_{j \in J} \alpha_j \qquad (Dual)$$

$$\alpha_j - p_{i,j}\beta_i \le 0 \qquad \forall i,j \qquad (7)$$

$$\sum_{i \in M} \beta_i = 1 \qquad (8)$$

$$\beta_i \ge 0 \qquad \forall i \in M \qquad (9)$$

(日) (四) (문) (문) (문)

Main theorem

There is a vector $\beta \in \mathbb{R}^{M}_{>0}$, given which the general instance is reduced to a Q|restricted instance.

• let (α, β) be optimum dual solution

$$\max \sum_{j \in J} \alpha_j \qquad (Dual)$$

$$\alpha_j - p_{i,j}\beta_i \le 0 \qquad \forall i,j \qquad (7)$$

$$\sum_{i \in M} \beta_i = 1 \qquad (8)$$

$$\beta_i \ge 0 \qquad \forall i \in M \qquad (9)$$

(日) (四) (문) (문) (문)

Main theorem

There is a vector $\beta \in \mathbb{R}^{M}_{>0}$, given which the general instance is reduced to a Q|restricted instance.

- let (α, β) be optimum dual solution
- complementary slackness:

$$x_{i,j} > 0 \quad \Rightarrow \quad \alpha_j = \min_i p_{i,j} \beta_i \quad \Rightarrow \quad \alpha_j = p_{i,j} \beta_i \quad \Leftrightarrow \quad p_{i,j} = \frac{\alpha_j}{\beta_i}$$

$$\max \sum_{j \in J} \alpha_j \qquad (Dual)$$

$$\alpha_j - p_{i,j}\beta_i \le 0 \qquad \forall i,j \qquad (7)$$

$$\sum_{i \in M} \beta_i = 1 \qquad (8)$$

$$\beta_i \ge 0 \qquad \forall i \in M \qquad (9)$$

Main theorem

There is a vector $\beta \in \mathbb{R}^{M}_{>0}$, given which the general instance is reduced to a Q|restricted instance.

- let (α, β) be optimum dual solution
- complementary slackness:

 $x_{i,j} > 0 \Rightarrow \alpha_j = \min_i p_{i,j} \beta_i \Rightarrow \alpha_j = p_{i,j} \beta_i \Leftrightarrow p_{i,j} = \frac{\alpha_j}{\beta_i}.$

• $p_j := \alpha_j$ be size of j, $s_i := \beta_i$ be speed of i.

$$\max \sum_{j \in J} \alpha_j \qquad (Dual)$$

$$\alpha_j - p_{i,j}\beta_i \le 0 \qquad \forall i,j \qquad (7)$$

$$\sum_{i \in M} \beta_i = 1 \qquad (8)$$

$$\beta_i \ge 0 \qquad \forall i \in M \qquad (9)$$

Main theorem

There is a vector $\beta \in \mathbb{R}^{M}_{>0}$, given which the general instance is reduced to a Q|restricted instance.

complementary slackness:

 $x_{i,j} > 0 \Rightarrow \alpha_j = \min_i p_{i,j} \beta_i \Rightarrow \alpha_j = p_{i,j} \beta_i \Leftrightarrow p_{i,j} = \frac{\alpha_j}{\beta_i}.$

•
$$p_j := \alpha_j$$
 be size of j , $s_i := \beta_i$ be speed of i .

$$\max \sum_{j \in J} \alpha_j \qquad (Dual)$$

$$\alpha_j - p_{i,j}\beta_i \le 0 \qquad \forall i,j \qquad (7)$$

$$\sum_{i \in M} \beta_i = 1 \qquad (8)$$

$$\beta_i \ge 0 \qquad \forall i \in M \qquad (9)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Main theorem

There is a vector $\beta \in \mathbb{R}^{M}_{>0}$, given which the general instance is reduced to a Q|restricted instance.

complementary slackness:

 $x_{i,j} > 0 \Rightarrow \alpha_j = \min_i p_{i,j} \beta_i \Rightarrow \alpha_j = p_{i,j} \beta_i \Leftrightarrow p_{i,j} = \frac{\alpha_j}{\beta_i}.$

•
$$p_j := \alpha_j$$
 be size of j , $s_i := \beta_i$ be speed of i .

• In practical, α , β could be zero. $p_{i,j} > (1 + \epsilon) \frac{p_j}{s_i}$

Deterministic $O\left(\frac{\log m}{\log \log m}\right)$ -Approx. Online Rounding

- Independent rounding $\Rightarrow O\left(\frac{\log m}{\log \log m}\right)$ -approx.
- Derandomization using conditional expectation leads a deterministic rounding algorithm.

Deterministic $O\left(\frac{\log m}{\log \log m}\right)$ -Approx. Online Rounding

- Independent rounding $\Rightarrow O\left(\frac{\log m}{\log \log m}\right)$ -approx.
- Derandomization using conditional expectation leads a deterministic rounding algorithm.

Minimize conditional expectation

Suppose we have the expectation of makespan Φ_{t-1} before time t, When job t arrives, we assign it to a machine $i \in M_t$ to minimize the expectation of makespan Φ_t at time t

Deterministic $O\left(\frac{\log m}{\log \log m}\right)$ -Approx. Online Rounding

- Independent rounding $\Rightarrow O\left(\frac{\log m}{\log \log m}\right)$ -approx.
- Derandomization using conditional expectation leads a deterministic rounding algorithm.

Minimize conditional expectation

Suppose we have the expectation of makespan Φ_{t-1} before time t, When job t arrives, we assign it to a machine $i \in M_t$ to minimize the expectation of makespan Φ_t at time t on condition of makespan at time t-1.

ICML 2021 15 / 16

イロト イポト イヨト イヨト 二日

greatly simplified [Lattanzi et al]

- greatly simplified [Lattanzi et al]
- 1. random assignment for **small jobs** $\left(\sum_{p_{i,j} < \frac{T'}{\log m}} x_{i,j} < \frac{1}{2}\right)$

- greatly simplified [Lattanzi et al]
- 1. random assignment for **small jobs** $\left(\sum_{p_{i,j} < \frac{T'}{\log m}} x_{i,j} < \frac{1}{2}\right)$
- 2. attempt to randomly assign **big jobs**, if the load of machine too large, job fails

- greatly simplified [Lattanzi et al]
- 1. random assignment for small jobs $\left(\sum_{p_{i,j} < \frac{T'}{\log m}} x_{i,j} < \frac{1}{2}\right)$
- 2. attempt to randomly assign **big jobs**, if the load of machine too large, job fails
- 3. graph induced by failed big jobs have $O(\log^{O(1)} m)$ -sized connected components

- greatly simplified [Lattanzi et al]
- 1. random assignment for small jobs $\left(\sum_{p_{i,j} < \frac{T'}{\log m}} x_{i,j} < \frac{1}{2}\right)$
- 2. attempt to randomly assign **big jobs**, if the load of machine too large, job fails
- 3. graph induced by failed big jobs have $O(\log^{O(1)} m)$ -sized connected components
- 4. using deterministic rounding algorithm for failed jobs

Thank you for your time.

・ロト ・ 日 ・ ・ 田 ト ・ 田