
Memory-Efficient
Pipeline-Parallel DNN Training

Deepak Narayanan§, Amar Phanishayee★, Kaiyu Shi†, Xie Chen†, Matei Zaharia§

★Microsoft Research † Microsoft § Stanford University

State-of-the-art models are becoming larger!

ELMo (94M)
BERT-L (340M)

GPT-2 (1.5B)

Megatron-LM (8.3B)
T5 (11B)

Turing -NLG (17.2B)
GPT-3 (175B)

0.01

0.1

1

10

100

1000

2018 2019 2020 2021

N
um

be
r o

f p
ar

am
et

er
s

(in
 b

ill
io

ns
)

Year

2

Model parallelism can alleviate memory pressure

Time

Time

1 2 3 4 1 2 3 4 5 6

1 2 3 4 1 2 3 4 5

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

Device 1
Device 2
Device 3
Device 4

Device 1
Device 2
Device 3
Device 4

A

A

A

A A

Split batch into microbatches
and pipeline execution

Model parallelism can alleviate memory pressure

Time

Time

1 2 3 4 1 2 3 4 5 6

1 2 3 4 1 2 3 4 5

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

Device 1
Device 2
Device 3
Device 4

Device 1
Device 2
Device 3
Device 4

A

A

A

A A

Split batch into microbatches
and pipeline execution

Existing pipeline parallelism approaches have
high throughput or low memory footprint

This work: memory-efficient pipeline parallelism

• High throughput

• Low memory footprint

• Strong weight update semantics (same weight version used in both
the forward and backward pass for a given batch)

5

1 2 3 4 1 5 2 6 3 7 4 8 5

1 2 3 4 1 2 5 3 6 4 7 5 8

1 2 3 4 1 2 3 5 4 6 5 7 6

1 1 2 2 3 3 4 4 5 5 6 6 7 7

Double-buffered weight updates

Worker 1

Worker 2

Worker 3

Worker 4

Backward PassForward PassTime

Stashed state

Generate a new weight version every 4 inputs (1→4, 5→8, etc.)

𝑊!
(#)

Stage or worker ID
Version number (incorporates gradients from inputs ≤ 𝑗)

𝑊!
(#),𝑊!

(%&%'.)

𝑊)
(#),𝑊)

(%&%'.)

𝑊*
(#),𝑊*

(%&%'.)

𝑊#
(#),𝑊#

(%&%'.)

6

Semantics of double-buffered weight updates

• Vanilla weight update semantics:
𝑊("#$) = 𝑊(") − 𝜈 ⋅ ∇𝑓(𝑊("))

• Weight update semantics with 2BW almost unchanged (note
additional delay term of 1 in gradient computation):

𝑊("#$) = 𝑊(") − 𝜈 ⋅ ∇𝑓(𝑊("&$))

7

Evaluation

8

2BW has weight update semantics similar to vanilla

Accuracy on downstream MNLI and RACE tasks unchanged

BERT model with 355 million parameters

9

PipeDream-2BW is faster than baselines

8 p3.16xlarge instances (64 GPUs) on AWS
3.8-billion parameter GPT model

20× faster

3.2× faster

10

Conclusion

• Pipeline parallelism can be used to train large models, but can
suffer from low resource utilization or high memory footprint

• PipeDream-2BW accelerates training by up to 3.2x compared to
baselines that use pipelining, and 20x compared to other baselines

https://cs.stanford.edu/~deepakn/ deepakn@cs.stanford.edu

Code open sourced at
https://github.com/msr-fiddle/pipedream/tree/pipedream_2bw

