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State-of-the-art models are becoming larger!

ELMo (94M)
BERT-L (340M)
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Model parallelism can alleviate memory pressure
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Split batch into microbatches
and pipeline execution
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Split batch into microbatches
and pipeline execution

Existing pipeline parallelism approaches have
high throughput or low memory footprint



This work: memory-efficient pipeline parallelism

• High throughput

• Low memory footprint

• Strong weight update semantics (same weight version used in both 
the forward and backward pass for a given batch)
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Double-buffered weight updates
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Backward PassForward PassTime

Stashed state

Generate a new weight version every 4 inputs (1→4, 5→8, etc.)
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Semantics of double-buffered weight updates

• Vanilla weight update semantics:
𝑊("#$) = 𝑊(") − 𝜈 ⋅ ∇𝑓(𝑊("))

• Weight update semantics with 2BW almost unchanged (note 
additional delay term of 1 in gradient computation):

𝑊("#$) = 𝑊(") − 𝜈 ⋅ ∇𝑓(𝑊("&$))
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Evaluation
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2BW has weight update semantics similar to vanilla

Accuracy on downstream MNLI and RACE tasks unchanged

BERT model with 355 million parameters
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PipeDream-2BW is faster than baselines

8 p3.16xlarge instances (64 GPUs) on AWS
3.8-billion parameter GPT model

20× faster

3.2× faster
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Conclusion

• Pipeline parallelism can be used to train large models, but can 
suffer from low resource utilization or high memory footprint

• PipeDream-2BW accelerates training by up to 3.2x compared to 
baselines that use pipelining, and 20x compared to other baselines

https://cs.stanford.edu/~deepakn/ deepakn@cs.stanford.edu

Code open sourced at
https://github.com/msr-fiddle/pipedream/tree/pipedream_2bw


