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State-of-the-art models are becoming larger!
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Model parallelism can alleviate memory pressure
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Model parallelism can alleviate memory pressure
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Existing pipeline parallelism approaches have
high throughput or low memory footprint
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This work: memory-efficient pipeline parallelism

* High throughput
* Low memory footprint

« Strong weight update semantics (same weight version used in both
the forward and backward pass for a given batch)



Double-buffered weight updates

Stashed state

Worker 1 Wl(4), Wl(init')

Worker 2 w, (4), w, (init.)

Worker 3 W, w i)

Worker 4 W4(4), W4(init')
Time —— [ Forward Pass Backward Pass

_(J')—> Version number (incorporates gradients from inputs < j)
I —— Stage or worker ID

Generate a new weight version every 4 inputs (1-4, 5-38, etc.)




Semantics of double-buffered weight updates

 Vanilla weight update semantics:
WD = w® —y . vFw®)

« Weight update semantics with 2BW almost unchanged (note
additional delay term of 1 in gradient computation):
WED = W@ —y . v E-1)



Evaluation



2BW has weight update semantics similar to vanilla
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BERT model with 355 million parameters

Accuracy on downstream MNLI and RACE tasks unchanged



PipeDream-2BW is faster than baselines

3.2x faster
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Conclusion
 Pipeline parallelism can be used to train large models, but can
suffer from low resource utilization or high memory footprint

* PipeDream-2BW accelerates training by up to 3.2x compared to
baselines that use pipelining, and 20x compared to other baselines

Code open sourced at
https://github.com/msr-fiddle/pipedream/tree/pipedream_2bw
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