GLSearch: Maximum Common Subgraph
Detection via Learning to Search

Derek Xu*,Yunsheng Bai*, Yizhou Sun, Wei Wang
University of California Los Angeles, California, USA

Presenter: Derek Xu
06/18/2021

Maximum Common Subgraph (MCS) Detection

1. Applications:
a. Software analysis
b. Graph database
c. Cloud computing
d. Drug synthesis

2. Challenging (NP-hard)

a. Subgraphs must be isomorphic to each other
b. Found subgraphs should be as large as possible
c. Connected and induced subgraph

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

s

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

< e

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

< Ao

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

£ o

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

[@%E{}

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

—0 ©
I:> o 30 o§.d
61 G2

o

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

o

(1) @ O
g1 92

© Root (O Pruned by branch and bound
o Terminal = Subgraph Growth

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

o

o Ok

© Root (O Pruned by branch and bound @ %‘0 :E @ %ﬁ %
o Terminal = Subgraph Growth @ ;
Predicted
D ® e

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS

o

)—©
I:> o 2 il oot g T
O —0—© o
@ o_© g
Root Pruned by branch and bound @
8 Terminal —Cz Subgraph Growth @ @ %O 3 Predicted
(20)) MCS

Existing Work on MCS Detection

State-of-the-art branch and bound search algorithm for MCS:

o Use or to choose an action which,
o cannot adapt to various real-world L Road-CA
L
graphs 3 4000
o may lead to many wasted search 2
>
iterations without finding a larger S 3000
common subgraph S /
m resulting in a suboptimal solution 3 2000;
n
under a limited time budget for 4;, sy Rt D
. L 1000
Iarge graph pairs 303 GLSearch-Rand —— McSp
o ol —— GLSearch-Scal -=-- McSp+RL
(g 0 500 1000 1500 2000 2500 3000

Runtime (sec)

Learning to Search for MCS Detection

e Qverall: Train to find the largest common subgraph with Deep Q-Learning
e Our DQN function is guided by “graph partitionings” from search:

Q(st,as) = 1+yMLP (CONCAT (INTERACT(hg, , hg,),

—_——-
INTERACT (h1, hsg),\ De, hD0|)> .

- -

o graph-level embeddings (kg hg.)

o subgraph-level embeddings (hs1,hs2)
o bidomain embeddings Epc,hl);

Learning to Search for MCS Detection

e Our DQN design factors out the action by “looking ahead”
=\
Q(st,as) =1 1+yMLP (CONCAT(INTERACT(hg1 yhg,),

INTERACT (hy1, hyo), hpe, hDO)) .

m Since the immediate reward r; = +1 regardless of which action to choose for the MCS

detection task
e — We can factor out the effect and look at the next state’s graph-level,

subgraph-level, and bidomain embeddings
e Add extra computation but gives the model more knowledge of the effect of

choosing an action

Learning to Search for MCS Detection

e GLSearch further leverages the search algorithm by

(@)

Promise-based search: During inference,
can “jump” out of local minima to an
earlier search state after no progress has
been made for a certain number of
iterations

: At the beginning of training,
use a supervised loss function to train the
DQN to predict MCS size for small graph
pairs

. After pre-training,

follow the expert trajectories provided by a
heuristic-based search algorithm for MCS
detection

. Road-CA

[(v)

[N

(@]

Y 4000

©

(&

= |

O

L 3000 - \

c

o ¥

5

= 2000

(V)]

40__1) e b | i G Sl
21000

% GLSearch-Rand —— McSp

v ol —— GLSearch-Scal -=-- McSp+RL
v 0 500 1000 1500 2000 2500 3000

Runtime (sec)

Evaluation: Effectiveness

Method RoAD DBEN DBZH DBPD ENRO COPR CIRC HPPI

652 1945 1907 1907 3369 3518 4275 2152
McSp 0.374 0.815 0.297 0.722 0.694 0.684 0.498 0.864
MCSP+RL 0.771 0.699 0.589 0.434 0.742 0.674 0583 0.787
GW-QAP 0305 0929 0.855 0.808 0.711 0.860 0.354 0.834
I-PCA 0.267 0.551 0.589 0.607 0.650 0.707 0.203 0.762
NEURALMCS 0977 0.783 0.616 0.620 0.737 0.742 0.561 0.785
GLSEARCH-RAND 0.641 0.762 0.658 0.639 0814 0.755 0.603 0.814
GLSEARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BEST SOLUTION SIZE | 131 508 482 521 543 #91 3515 404

Consistently detect subgraphs that are larger than all baselines.

We make the code and datasets used in this paper publicly available.

GLSearch on California Road Networ

1000 2000 3000 4000

Subgraphs found by GLSearch-Scal

Time

Baseline on California Road Network

Time
Subgraphs found by McSp

1000 2000 2609

Insights and Conclusion

1. Search for MCS detection
a. We design a learning based agent to choose smarter action at each search iteration
2. Learning in general
a. Learning components can be further enriched by incorporating knowledge on tackling hard
constraints of an NP-hard task, e.g. bidomain in our case into their model
3. Graph deep learning
a. We enhance the existing Graph Neural Networks by leveraging non-local information
4. Reinforcement learning

a. We show how to encode states and actions for an NP-hard task on a graph pair instead of a
single graph and leverage an existing search algorithm for training the DQN

Thank you!

