Implicit Bias of Linear RNNs

Melika Emami^{1,}, Mojtaba Sahraee-Ardakan^{1,2}, Parthe Pandit^{1,2}, Sundeep Rangan³, Alyson K. Fletcher^{1,2}

ECE, UCLA , 2 STAT, UCLA, 3 ECE, NYU

ICML 2021

Implicit Bias of Linear RNNs

ICML 2021 1/9

・ロト ・回ト ・ヨト ・ヨ)

Recurrent Neural Networks (RNNs)

• RNN model:

$$h_t = \phi(Wh_{t-1} + Fx_t), \quad y_t = Ch_t \tag{1}$$

- Sequence-to-sequence mapping:

$$(x_0, \ldots, x_{T-1}) \rightarrow (y_0, \ldots, y_{T-1})$$

- Parameters: $\theta_{\text{RNN}} = (W, F, C, h_{-1})$
- $-h_t$ is n dimensional
- Modeling sequential data

- Empirically known: RNNs learned from data cannot capture long-term dependencies
 - Short-term memory bias
- Questions:
 - How "short" is short-term memory?
 - Why is there short-term memory?
 - Can we control it?

• Our contribution:

- Precisely characterize this short-term bias
- Show connections to initialization

イロト イヨト イヨト イヨト

Linear RNNs

• Linear RNN model:

$$h_t = \frac{1}{\sqrt{n}} W h_{t-1} + F x_t, \quad y_t = \frac{1}{\sqrt{n}} C h_t$$
 (2)

- Parameters: $\theta_{\text{RNN}} = (W, F, C)$ and $h_{-1} = 0$
- State dimension: n
- Mapping: $y = f_{\text{RNN}}(x, \theta_{\text{RNN}})$
- **Non-linear** parameterization \rightarrow hard to analyze
- State-space representation of a linear system

ICML 2021 3/9

・ロト ・回ト ・ヨト ・ヨト

• Key observation:

Functional equivalence of linear RNNs and 1D convolutional model

• 1D convolutional model:

$$y_t = \sum_{j=0}^t L_j x_{t-j}, \qquad L_j = \frac{1}{n^{(j+1)/2}} C W^j F.$$
 (3)

- Linear systems theory: Identical input-output mapping with RNNs
- Different parameterizations
- Linear in parameters L_j
- L_j : dimensions independent of n

 $y_t = L_t * x_t$

イロト イヨト イヨト イヨト

ICML 2021 4/9

Scaled Convolutional Model

• Scaled 1D convolutional model:

$$y_t = \sum_{j=0}^t \sqrt{\rho_j} \theta_{j,\text{conv}} x_{t-j} \tag{4}$$

- $\rho_j > 0$: positive fixed scaling factors
- Learnable parameters: θ_{conv}
- Mapping: $y = f_{\text{conv}}(x, \theta_{\text{conv}})$
- Linear in parameters $\theta_{\rm conv}$
- Short-term memory if ρ_j decreases with j
- Dimensions of θ_{conv} independent of n

$$y_t = \sqrt{\rho_t} \theta_{\mathrm{conv},t} * x_t$$

イロト イヨト イヨト イヨト

ICML 2021 5/9

Main Result: Equivalence in Training

Linear RNN

- Initialize with:

$$W_{ij} \sim N(0, \nu_W), F_{ij} \sim N(0, \nu_F), C_{ki} \sim N(0, \nu_C)$$

- Non-linear parameterization
- Hard to analyze

Scaled 1D convolutional

- Fixed ρ_j
- Linear parameterization

イロト イヨト イヨト イヨト

- Easy to analyze

Theorem (Equivalence in Training)

(a) Under gradient descent, as $n \to \infty$, learning the linear RNN is equivalent to learning the scaled convolutional model when

$$\rho_j = \nu_C (j\nu_F \nu_W^{j-1} + \nu_W^j) + \nu_F \nu_W^j.$$
(5)

(b) The equivalence holds throughout training.

ICML 2021 6/9

Implications

- Consequence of equivalence:
 - Stability: $\frac{1}{\sqrt{n}}\lambda_{\max}(W) < 1 \Rightarrow \nu_W < 1$
 - ρ_j decays geometrically with ν_W^j
 - Coefficients with high lag are given low weight

イロト イヨト イヨト イヨト

Main Result: Implicit Bias Toward Short-Term Memory

• Consider step ℓ of gradient descent training of the linear RNN model:

$$\theta_{\text{RNN}}^{\ell} = (W^{\ell}, F^{\ell}, C^{\ell}), \qquad L_{\text{RNN}, j}^{\ell} = n^{-(j+1)/2} C^{\ell} (W^{\ell})^{j} F^{\ell}$$
(6)

Theorem (Implicit Bias of Linear RNNs)

(a) At initialization, we have

$$\lim_{n \to \infty} \mathbb{E} \|L^0_{\text{RNN},j}\|_F^2 = n_x n_y \nu_C \nu_F \nu_W^j.$$
(7)

(b) For all steps ℓ , there exists constants B_1 and B_2 such that if $\eta < B_1$,

$$\limsup_{n \to \infty} \|L_{\text{RNN},j}^{\ell} - L_{\text{RNN},j}^{0}\|_F \le B_2 \rho_j \eta \ell = O(\ell \ \nu_W^j) \tag{8}$$

where the convergence is in probability.

- Learning the effect at delay j needs exponential number of steps with j
- To learn dependencies at delay j, $\|L_{\text{RNN},j}^{\ell} L_{\text{RNN},j}^{0}\|$ need to be large

イロト イヨト イヨト イヨト

Numerical Experiments

• Synthetic data: true system generated via an RNN with 4 hidden states

- Experiment: Synthetic data with delay: $y_t = x_{t-delay} + noise$
 - Low delay: Implicit bias helps \rightarrow lower variance error
 - High delay: Implicity bias hurts \rightarrow cannot capture delay

9/9

Implicit Bias of Linear RNNs