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Context

Graph learning: vertex & graph classification, regression,...

Graph learning by means of graph embeddings

Graph embeddings computed by Message-Passing Neural Networks (MPNNs)

Distinguishing power of MPNNs

Theoretical analysis

2 / 1



Graph Embeddings

discrete world of graphs
graph embeddingÐÐÐÐÐÐÐÐÐ→ continuous world of vectors in Rs

▸ Parameters underlying embedding methods are learned for specific graph learning
tasks.

▸ Many graph embeddings methods can be seen as a Message-Passing Neural Network.1

1
RGilmer et al. Neural message passing for quantum chemistry. ICML 2017
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Message-Passing Neural Networks (MPNNs)

▸ Initially: `̀̀
(0)
v ∈ Rs0 is a hot-one encoding of the label of vertex v

▸ In layer t > 0: Each vertex v receives messages from its neighbors based on the
previously computed vertex embeddings, which are then aggregated, and then further
updated based on the vertex own previous embedding:
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▸ Message and update functions contain learnable parameters.
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Message-Passing Neural Networks (MPNNs)

We emphasize:

▸ The message functions Msg(t) in MPNNs only depend on the previously computed
vertex embeddings:

`̀̀
(t)
v ∶= Upd(t)(`̀̀(t−1)v , ∑

u∈NG (v)

Msg(t)(`̀̀(t−1)v , `̀̀
(t−1)
u )) ∈ Rst ,

▸ This will be important later on.
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Distinguishing Power

How well can MPNNs distinguish vertices and graphs?

▸ The distinguishing power reflect the ability to distinguish vertices/graphs by means of
their vector embeddings.

▸ Important to understand, since it measures the loss of information by the embedding
method.

▸ For MPNNs, the distinguish power can be characterized in terms of the Weisfeiler-
Lehman graph isomorphism test.2

2
RWeisfeiler and Lehman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya

Informatsiya, 1968
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Weisfeiler-Lehman (WL) test

▸ Let `̀̀
(0)
v be the initial label of vertex v

▸ In round t > 0, same recipe as for MPNNs:
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×
×
×
Ö
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(t)
v ∶= Hash(`̀̀

(t−1)
v ,m(t)v )

▸ In contrast to MPNNs: No learnable parameters, Hash function is injective=most
distinguishing.
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Weisfeiler-Lehman (WL) test

▸ Classical, well-studied algorithm, used in graph isomorphism tests.

▸ WL is said to distinguish graphs G and H in t rounds when the multisets of labels
computed by WL in t rounds on both graphs differ. Formally:

{{`̀̀(t)v ∣ v ∈ VG}} ≠ {{`̀̀
(t)
w ∣ w ∈ VH}}

▸ The distinguishing power of WL is well-understood.3,4

3
RGrohe, M. Word2vec, node2vec, graph2vec, x2vec: To-wards a theory of vector embeddings of structured data. PODS, 2020

4
RSato, R. A survey on the expressive power of graph neural networks. ArXiv, 2020
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Distinguishing Power of MPNNs

The following is known:5,6

Theorem
▸ For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then

neither can any t-layer MPNN.

▸ For any two graphs G and H, there exists an MPNN with precisely the same distin-
guishing power as the WL-test. In fact, this MPNN can be assumed to originate from
a “basic” Graph Neural Network (GNN).

5
RMorris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

6
RXu et al. How powerful are graph neural networks? ICLR, 2019
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Our Research Question

▸ Does this theorem apply to commonly used GNN architectures?

▸ In other words, can common GNN architectures indeed be cast as MPNNs?

▸ Are they as powerful as WL?

We next look at:

▸ Basic Graph Neural Networks (for which the answer to these questions are known)

▸ Graph Convolutional Networks (for which a new analysis is needed)
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Basic Graph Neural Networks

▸ Layers are defined by:7

L(t) ∶= σ (L(t−1)W(t)1 +AGL(t−1)W
(t)
2 +B(t))

▸ AG is adjacency matrix of G , L(t) consists of feature vectors,

▸ W
(t)
1 and W

(t)
2 are learnable weight matrices, B(t) is a constant bias matrix.

▸ Indeed corresponds to an MPNN:

Msg(t)(x, y) ∶= yW
(t)
2 ↦ neighbors send their weighted features (y)

Upd(t)(x,m) ∶= σ(xW
(t)
1 +m + b(t))↦ own weighed feature (x) added

to aggregations of neighbors features (m)

▸ So, the Theorem applies: distinguishing power of t layer basic GNNs cannot exceed
that of a t round WL test.
7
RHamilton et al. Inductive representation learning on large graphs. NeurIPS, 2017
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Graph Convolution Networks

▸ Very popular architecture in which layers are defined by:8

L(t) ∶= σ (D−1/2(I +AG)D−1/2L(t−1)W
(t)
2 +B(t))

▸ D is diagonal matrix consisting of degrees dv for v ∈ V .

v w

▸ A GCN can distinguish v from w with one layer, but WL cannot in one round!

▸ Previous theorem does not apply! A GCN is not a “standard” MPNN.

8
RKipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017
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Graph Convolution Networks

▸ What happened?
v w

▸ A GCN detects immediately that:

v is adjacent to a red vertex of degree three

w is adjacent to a red vertex of degree one.

▸ By contrast, WL only observes the colors.
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Degree-aware MPNNs

▸ To see GCNs as MPNNs, we extend the message functions with degree information:

▸ Proposal: Degree-aware MPNNs:

▸ As before, let `̀̀
(0)
v ∈ Rs0 be a hot-one encoding of the label of vertex v .

▸ Then, in layer t a degree-aware MPNN computes a new vertex-labelling for each
vertex:

`̀̀
(t)
v ∶= Upd(t)(`̀̀(t−1)v , ∑

u∈NG (v)

Msg(t)(`̀̀(t−1)v , `̀̀
(t−1)
u ,dv ,du)) ∈ Rst ,

where now Upd(t) has extra arguments.
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Degree-aware MPNNs vs standard MPNNs

Proposition

Any degree-aware MPNN consisting of t layers, can be simulated by an MPNN consisting
of t + 1 layers.

Idea: use the first layer of the MPNN to compute degrees, add these to the labels in
subsequent layers.

▸ Thus, for any two graphs G and H, if WL cannot distinguish G from H in t+1 rounds,
then neither can any degree-aware t layer MPNN.

▸ Degree-aware MPNNs (such as GCNs) may have an advantage over standard MPNNs
in terms of number of layers. So, let’s agree to degree!
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Degree-aware MPNNs

Not all degree-aware MPNNs are one step ahead:

GNN architectures using degrees9,10,11 bounded by

GNN1. σ ((D + I)−1/2(A + I)(D + I)−1/2L(t−1)W(t)) WL+1 step

GNN2. σ (D−1/2AD
−1/2L(t−1)W(t)) WL+1 step

GNN3. σ ((r I+(1−r)D)−1/2(A+pI)(r I+(1−r)D)−1/2L(t−1)W(t)) WL+1 step

GNN4. σ ((D−1/2AD
−1/2 + I)L(t−1)W(t)) WL+1 step

GNN5. σ (D−1AL(t−1)W(t)) WL

GNN6. σ ((D+I)−1(A+I)L(t−1)W(t)) WL

If GNNs only use degrees after aggregation, then they can be cast as standard MPNNs.
9
RKipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017

10
RWu et al. Simplifying graph convolutional networks. ICML, 2019

11
RMeltzer et al. Pinet: A permutation invariant graph neural network for graph classification. arXiv, 2019
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WL-powerful MPNNs

Recall:12

Theorem

For any two graphs G and H, there exists a basic GNN that can distinguish these graphs
when WL can distinguish them too.

▸ So, the class of basic GNNs is as powerful as WL.

▸ Still true for GCNs? No!

▸ WL can distinguish these two vertices, GCNs cannot!

12
RMorris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019
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WL-powerful GCNs

▸ Reason that GCNs cannot distinguish vertices in

is not because of degree information but simply because of use of I +A as aggregation
matrix.

▸ For the example graph,

I +A = (1 1
1 1
)

So all features are propagated in the same way for both vertices.

▸ Solution: consider pI +A for parameter 0 < p < 1 instead!

▸ The use of parameter p was empirically motivated by Kipf and Welling.
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Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

L(t) ∶= σ(diag(g)(A + pI)diag(h)L(t−1)W(t) +B(t)),
where g and h are degree-determined vectors (hold identical values for vertices having
same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these
graphs when WL can distinguish them too. In addition, the parameter p can be chosen
uniformly across layers.

▸ Applies to basic GCNs by Kipf and Welling: σ ((D + I)−1/2(A + pI)(D + I)−1/2L(t−1)W(t))
▸ Theoretical justification of the parameter p!

19 / 1



Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

L(t) ∶= σ(diag(g)(A + pI)diag(h)L(t−1)W(t) +B(t)),
where g and h are degree-determined vectors (hold identical values for vertices having
same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these
graphs when WL can distinguish them too. In addition, the parameter p can be chosen
uniformly across layers.

▸ Applies to basic GCNs by Kipf and Welling: σ ((D + I)−1/2(A + pI)(D + I)−1/2L(t−1)W(t))
▸ Theoretical justification of the parameter p!

19 / 1



WL-powerful GCNs

GNN architectures using degrees as strong as WL?

GNN7. σ ((A + pI)L(t−1)W(t)) yes

GNN8. σ ((D + I)−1/2(A + pI)(D + I)−1/2L(t−1)W(t)) yes

GNN3. σ ((r I+(1−r)D)−1/2(A+pI)(r I+(1−r)D)−1/2L(t−1)W(t)) yes

GNN1. σ ((D + I)−1/2(A + I)(D + I)−1/2L(t−1)W(t)) no

GNN2. σ (D−1/2AD
−1/2L(t−1)W(t)) no

GNN4. σ ((D−1/2AD
−1/2 + I)L(t−1)W(t)) no

GNN5. σ (D−1AL(t−1)W(t)) no

GNN6. σ ((D+I)−1(A+I)L(t−1)W(t)) no
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Conclusions

▸ When casting GNNs as MPNNs: carefully analyze what information message functions
use!

▸ In case of degree information: distinguishing power still bounded by WL, but one step
ahead.

▸ This is important since in practice GNN consist of a small number of layers.

▸ WL-powerful degree-aware GNNs: introduce learnable parameter p and use pI +A as
aggregation matrix.

▸ Research direction: Analyze distinguishing power of more general MPNN extensions
in which message functions may depend on graph information beyond degrees.
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