Let's Agree to Degree: Comparing Graph Convolutional Networks in the Message-Passing Framework

Floris Geerts (University of Antwerp, Belgium), Guillermo A. Perez (University of Antwerp, Belgium) & Filip Mazowiecki (Max Planck Institute, Germany)

Context

Graph learning: vertex & graph classification, regression,... __Graph learning by means of graph embeddings Graph embeddings computed by Message-Passing Neural Networks (MPNNs) ___Distinguishing power of MPNNs

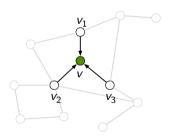
Graph Embeddings

discrete world of graphs $\xrightarrow{graph \ embedding}$ continuous world of vectors in \mathbb{R}^s

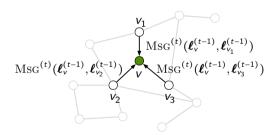
- Parameters underlying embedding methods are learned for specific graph learning tasks.
- Many graph embeddings methods can be seen as a Message-Passing Neural Network.¹

¹ Gilmer et al. Neural message passing for quantum chemistry. ICML 2017

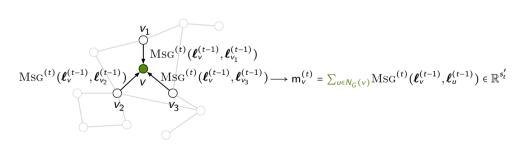
- ▶ Initially: $\ell_v^{(0)} \in \mathbb{R}^{s_0}$ is a hot-one encoding of the label of vertex v
- ▶ In layer t > 0: Each vertex v receives messages from its neighbors based on the previously computed vertex embeddings, which are then aggregated, and then further updated based on the vertex own previous embedding:



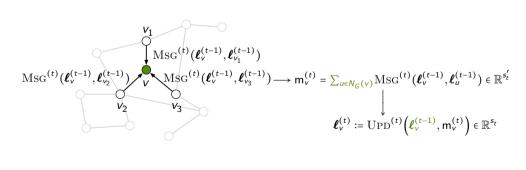
- ▶ Initially: $\ell_v^{(0)} \in \mathbb{R}^{s_0}$ is a hot-one encoding of the label of vertex v
- ▶ In layer t > 0: Each vertex v receives messages from its neighbors based on the previously computed vertex embeddings, which are then aggregated, and then further updated based on the vertex own previous embedding:



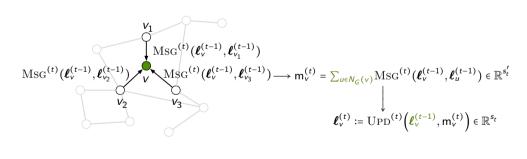
- ▶ Initially: $\ell_v^{(0)} \in \mathbb{R}^{s_0}$ is a hot-one encoding of the label of vertex v
- ▶ In layer t > 0: Each vertex v receives messages from its neighbors based on the previously computed vertex embeddings, which are then aggregated, and then further updated based on the vertex own previous embedding:



- ▶ Initially: $\ell_v^{(0)} \in \mathbb{R}^{s_0}$ is a hot-one encoding of the label of vertex v
- ▶ In layer t > 0: Each vertex v receives messages from its neighbors based on the previously computed vertex embeddings, which are then aggregated, and then further updated based on the vertex own previous embedding:



- ▶ Initially: $\ell_v^{(0)} \in \mathbb{R}^{s_0}$ is a hot-one encoding of the label of vertex v
- ▶ In layer t > 0: Each vertex v receives messages from its neighbors based on the previously computed vertex embeddings, which are then aggregated, and then further updated based on the vertex own previous embedding:



Message and update functions contain learnable parameters.

We emphasize:

► The message functions $Msg^{(t)}$ in MPNNs only depend on the previously computed vertex embeddings:

$$\boldsymbol{\ell}_{v}^{(t)} \coloneqq \mathrm{UPD}^{(t)} \Big(\boldsymbol{\ell}_{v}^{(t-1)}, \sum_{u \in N_{G}(v)} \mathrm{Msg}^{(t)} \big(\boldsymbol{\ell}_{v}^{(t-1)}, \boldsymbol{\ell}_{u}^{(t-1)}\big) \Big) \in \mathbb{R}^{s_{t}},$$

▶ This will be important later on.

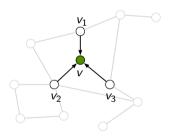
Distinguishing Power

How well can MPNNs distinguish vertices and graphs?

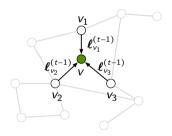
- ► The distinguishing power reflect the ability to distinguish vertices/graphs by means of their vector embeddings.
- Important to understand, since it measures the loss of information by the embedding method.
- ► For MPNNs, the distinguish power can be characterized in terms of the Weisfeiler-Lehman graph isomorphism test.²

² [Weisfeiler and Lehman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya, 1968

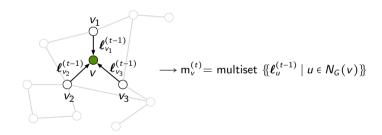
- Let $\ell_v^{(0)}$ be the initial label of vertex v
- ▶ In round t > 0, same recipe as for MPNNs:



- Let $\ell_v^{(0)}$ be the initial label of vertex v
- ▶ In round t > 0, same recipe as for MPNNs:



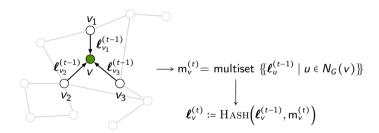
- Let $\ell_v^{(0)}$ be the initial label of vertex v
- ▶ In round t > 0, same recipe as for MPNNs:



- Let $\ell_v^{(0)}$ be the initial label of vertex v
- ▶ In round t > 0, same recipe as for MPNNs:



- Let $\ell_{\nu}^{(0)}$ be the initial label of vertex ν
- ▶ In round t > 0, same recipe as for MPNNs:



▶ In contrast to MPNNs: No learnable parameters, HASH function is injective=most distinguishing.

- ▶ Classical, well-studied algorithm, used in graph isomorphism tests.
- ▶ WL is said to distinguish graphs G and H in t rounds when the multisets of labels computed by WL in t rounds on both graphs differ. Formally:

$$\{\{\ell_v^{(t)} \mid v \in V_G\}\} \neq \{\{\ell_w^{(t)} \mid w \in V_H\}\}$$

► The distinguishing power of WL is well-understood. 3,4

³ [3] Grohe, M. Word2vec, node2vec, graph2vec, x2vec: To-wards a theory of vector embeddings of structured data. PODS, 2020

⁴ [Sato, R. A survey on the expressive power of graph neural networks. ArXiv, 2020

Distinguishing Power of MPNNs

The following is known: 5,6

Theorem

- ► For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then neither can any t-layer MPNN.
- ► For any two graphs G and H, there exists an MPNN with precisely the same distinguishing power as the WL-test. In fact, this MPNN can be assumed to originate from a "basic" Graph Neural Network (GNN).

⁵ [13] Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

Taxu et al. How powerful are graph neural networks? ICLR, 2019

Distinguishing Power of MPNNs

The following is known: 5,6

Theorem

- ► For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then neither can any t-layer MPNN.
- ▶ For any two graphs G and H, there exists an MPNN with precisely the same distinguishing power as the WL-test. In fact, this MPNN can be assumed to originate from a "basic" Graph Neural Network (GNN).

¹⁵ Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

The Xu et al. How powerful are graph neural networks? ICLR, 2019

Distinguishing Power of MPNNs

The following is known: 5,6

Theorem

- ► For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then neither can any t-layer MPNN.
- ▶ For any two graphs G and H, there <u>exists</u> an MPNN with precisely the same distinguishing power as the WL-test. In fact, this MPNN can be assumed to originate from a "basic" Graph Neural Network (GNN).

Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

[™] Xu et al. How powerful are graph neural networks? ICLR, 2019

Our Research Question

- ▶ Does this theorem apply to commonly used GNN architectures?
- ▶ In other words, can common GNN architectures indeed be cast as MPNNs?
- Are they as powerful as WL?

We next look at:

- ▶ Basic Graph Neural Networks (for which the answer to these questions are known)
- Graph Convolutional Networks (for which a new analysis is needed)

Basic Graph Neural Networks

Layers are defined by:⁷

$$\mathsf{L}^{(t)} \coloneqq \sigma \left(\mathsf{L}^{(t-1)} \mathsf{W}_1^{(t)} + \mathsf{A}_{G} \mathsf{L}^{(t-1)} \mathsf{W}_2^{(t)} + \mathsf{B}^{(t)} \right)$$

- \triangleright A_G is adjacency matrix of G, L^(t) consists of feature vectors,
- $\mathbb{N}_1^{(t)}$ and $\mathbb{N}_2^{(t)}$ are learnable weight matrices, $\mathbb{N}_2^{(t)}$ is a constant bias matrix.
- Indeed corresponds to an MPNN:

$$\mathrm{Msg}^{(t)}(\mathsf{x},\mathsf{y}) \coloneqq \mathsf{yW}_2^{(t)} \mapsto \mathsf{neighbors} \; \mathsf{send} \; \mathsf{their} \; \mathsf{weighted} \; \mathsf{features} \; (y)$$

$$\mathrm{UPD}^{(t)}(\mathsf{x},\mathsf{m}) \coloneqq \sigma(\mathsf{xW}_1^{(t)} + \mathsf{m} + \mathsf{b}^{(t)}) \mapsto \mathsf{own} \; \mathsf{weighed} \; \mathsf{feature} \; (x) \; \mathsf{added} \; \mathsf{to} \; \mathsf{aggregations} \; \mathsf{of} \; \mathsf{neighbors} \; \mathsf{features} \; (m)$$

▶ So, the Theorem applies: distinguishing power of *t* layer basic GNNs cannot exceed that of a *t* round WL test.

Familton et al. Inductive representation learning on large graphs. NeurIPS, 2017

Basic Graph Neural Networks

Layers are defined by:⁷

$$\mathsf{L}^{(t)} \coloneqq \sigma \left(\mathsf{L}^{(t-1)} \mathsf{W}_1^{(t)} + \mathsf{A}_{G} \mathsf{L}^{(t-1)} \mathsf{W}_2^{(t)} + \mathsf{B}^{(t)} \right)$$

- \triangleright A_G is adjacency matrix of G, L^(t) consists of feature vectors,
- $\mathbb{N}_1^{(t)}$ and $\mathbb{N}_2^{(t)}$ are learnable weight matrices, $\mathbb{N}_2^{(t)}$ is a constant bias matrix.
- ► Indeed corresponds to an MPNN:

$$\mathrm{MSG}^{(t)}(\mathsf{x},\mathsf{y}) \coloneqq \mathsf{yW}_2^{(t)} \mapsto \mathsf{neighbors} \; \mathsf{send} \; \mathsf{their} \; \mathsf{weighted} \; \mathsf{features} \; (y)$$

$$\mathrm{UPD}^{(t)}(\mathsf{x},\mathsf{m}) \coloneqq \sigma(\mathsf{xW}_1^{(t)} + \mathsf{m} + \mathsf{b}^{(t)}) \mapsto \mathsf{own} \; \mathsf{weighed} \; \mathsf{feature} \; (x) \; \mathsf{added} \; \mathsf{to} \; \mathsf{aggregations} \; \mathsf{of} \; \mathsf{neighbors} \; \mathsf{features} \; (m)$$

▶ So, the Theorem applies: distinguishing power of *t* layer basic GNNs cannot exceed that of a *t* round WL test.

Hamilton et al. Inductive representation learning on large graphs. NeurIPS, 2017

Graph Convolution Networks

Very popular architecture in which layers are defined by:⁸

$$\mathsf{L}^{(t)} \coloneqq \sigma \left(\mathsf{D}^{-1/2} (\mathsf{I} + \mathsf{A}_G) \mathsf{D}^{-1/2} \mathsf{L}^{(t-1)} \mathsf{W}_2^{(t)} + \mathsf{B}^{(t)} \right)$$

▶ D is diagonal matrix consisting of degrees d_v for $v \in V$.

- A GCN can distinguish v from w with one layer, but WL cannot in one round!
- Previous theorem does not apply! A GCN is not a "standard" MPNN.

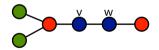
[[] Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017

Graph Convolution Networks

Very popular architecture in which layers are defined by:⁸

$$\mathsf{L}^{(t)} \coloneqq \sigma \left(\mathsf{D}^{-1/2} (\mathsf{I} + \mathsf{A}_G) \mathsf{D}^{-1/2} \mathsf{L}^{(t-1)} \mathsf{W}_2^{(t)} + \mathsf{B}^{(t)} \right)$$

▶ D is diagonal matrix consisting of degrees d_v for $v \in V$.

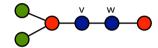


- ▶ A GCN can distinguish v from w with one layer, but WL cannot in one round!
- Previous theorem does not apply! A GCN is not a "standard" MPNN.

Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017

Graph Convolution Networks

▶ What happened?



- ► A GCN detects immediately that:
 - v is adjacent to a red vertex of degree three
 - w is adjacent to a red vertex of degree one.
- ▶ By contrast, WL only observes the colors.

Degree-aware MPNNs

- ▶ To see GCNs as MPNNs, we extend the message functions with degree information:
- ► Proposal: Degree-aware MPNNs:
- As before, let $\ell_{\nu}^{(0)} \in \mathbb{R}^{s_0}$ be a hot-one encoding of the label of vertex ν .
- ► Then, in layer t a degree-aware MPNN computes a new vertex-labelling for each vertex:

$$\boldsymbol{\ell}_v^{(t)} \coloneqq \mathrm{UPD}^{(t)} \Big(\boldsymbol{\ell}_v^{(t-1)}, \sum_{u \in N_C(v)} \mathrm{Msg}^{(t)} \big(\boldsymbol{\ell}_v^{(t-1)}, \boldsymbol{\ell}_u^{(t-1)}, \boldsymbol{d}_v, \boldsymbol{d}_u\big) \Big) \in \mathbb{R}^{s_t},$$

where now $UPD^{(t)}$ has extra arguments.

Degree-aware MPNNs vs standard MPNNs

Proposition

Any degree-aware MPNN consisting of t layers, can be simulated by an MPNN consisting of t+1 layers.

Idea: use the first layer of the MPNN to compute degrees, add these to the labels in subsequent layers.

- ▶ Thus, for any two graphs *G* and *H*, if WL cannot distinguish *G* from *H* in *t*+1 rounds, then neither can any degree-aware *t* layer MPNN.
- Degree-aware MPNNs (such as GCNs) may have an advantage over standard MPNNs in terms of number of layers. So, let's agree to degree!

Degree-aware MPNNs vs standard MPNNs

Proposition

Any degree-aware MPNN consisting of t layers, can be simulated by an MPNN consisting of t+1 layers.

Idea: use the first layer of the MPNN to compute degrees, add these to the labels in subsequent layers.

- ▶ Thus, for any two graphs G and H, if WL cannot distinguish G from H in t+1 rounds, then neither can any degree-aware t layer MPNN.
- ▶ Degree-aware MPNNs (such as GCNs) may have an advantage over standard MPNNs in terms of number of layers. So, let's agree to degree!

Not all degree-aware MPNNs are one step ahead:

	GNN architectures using degrees ^{9,10,11}		bounded by
GNN1.	σ ($((D+I)^{-1/2}(A+I)(D+I)^{-1/2}L^{(t-1)}W^{(t)})$	$WL{+}1$ step
GNN2.	σ	$ \left\{ (D+I)^{-1/2} (A+I) (D+I)^{-1/2} L^{(t-1)} W^{(t)} \right\} $ $ \left\{ (D+I)^{-1/2} A D^{-1/2} L^{(t-1)} W^{(t)} \right\} $ $ \left\{ (rI+(1-r)D)^{-1/2} (A+pI) (rI+(1-r)D)^{-1/2} L^{(t-1)} W^{(t)} \right\} $ $ \left\{ (D^{-1/2} A D^{-1/2} + I) L^{(t-1)} W^{(t)} \right\} $	$WL{+}1$ step
GNN3.	σ	$\left((r I + (1-r)D)^{-1/2} (A + p I) (r I + (1-r)D)^{-1/2} L^{(t-1)} W^{(t)} \right)$	$WL{+}1$ step
GNN4.	σ	$\left((D^{-1/2}AD^{-1/2} + I)L^{(t-1)}W^{(t)} \right)$	$WL{+}1$ step
GNN5.	σ	$\left(\overline{D^{-1}AL}^{(t-1)}\overline{W}^{(t)} \right)$	WL
GNN6.	σ ($\left\langle \frac{D^{-1}AL^{(t-1)}W^{(t)}}{(D+I)^{-1}}(A+I)L^{(t-1)}W^{(t)}\right)$	WL

If GNNs only use degrees after aggregation, then they can be cast as standard MPNNs.

⁹ [37 Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017

 $^{^{10}}$ [$^{\odot}$ Wu et al. Simplifying graph convolutional networks. ICML, 2019

Meltzer et al. Pinet: A permutation invariant graph neural network for graph classification. arXiv, 2019

WL-powerful MPNNs

Recall.12

Theorem

For any two graphs G and H, there exists a basic GNN that can distinguish these graphs when WL can distinguish them too.

- So, the class of basic GNNs is as powerful as WL.
- Still true for GCNs? No!

WL can distinguish these two vertices, GCNs cannot

^{12 [3]} Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

WL-powerful MPNNs

Recall.12

Theorem

For any two graphs G and H, there exists a basic GNN that can distinguish these graphs when WL can distinguish them too.

- ▶ So, the class of basic GNNs is as powerful as WL.
- Still true for GCNs? No!

WL can distinguish these two vertices, GCNs cannot!

^{12 [3]} Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019

WL-powerful GCNs

Reason that GCNs cannot distinguish vertices in

is not because of degree information but simply because of use of I + A as aggregation matrix.

► For the example graph,

$$I + A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

So all features are propagated in the same way for both vertices.

- ▶ Solution: consider pI + A for parameter 0 instead!
- ▶ The use of parameter *p* was empirically motivated by Kipf and Welling.

WL-powerful GCNs

Reason that GCNs cannot distinguish vertices in

is not because of degree information but simply because of use of I + A as aggregation matrix.

► For the example graph,

$$I + A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

So all features are propagated in the same way for both vertices.

- ▶ Solution: consider pI + A for parameter 0 instead!
- ▶ The use of parameter *p* was empirically motivated by Kipf and Welling.

Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

$$L^{(t)} := \sigma(\operatorname{diag}(g)(A + \rho I)\operatorname{diag}(h)L^{(t-1)}W^{(t)} + B^{(t)}),$$

where g and h are degree-determined vectors (hold identical values for vertices having same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these graphs when WL can distinguish them too. In addition, the parameter p can be chosen uniformly across layers.

- ▶ Applies to basic GCNs by Kipf and Welling: $\sigma \left((D+I)^{-1/2} (A+pI) (D+I)^{-1/2} L^{(t-1)} W^{(t)} \right)$
- ▶ Theoretical justification of the parameter *p*

Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

$$L^{(t)} := \sigma(\operatorname{diag}(g)(A + \rho I)\operatorname{diag}(h)L^{(t-1)}W^{(t)} + B^{(t)}),$$

where g and h are degree-determined vectors (hold identical values for vertices having same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these graphs when WL can distinguish them too. In addition, the parameter p can be chosen uniformly across layers.

- ▶ Applies to basic GCNs by Kipf and Welling: $\sigma\left((D+I)^{-1/2}(A+\rho I)(D+I)^{-1/2}L^{(t-1)}W^{(t)}\right)$
- ▶ Theoretical justification of the parameter *p*!

WL-powerful GCNs

	GNN architectures using degrees	as strong as WL?
GNN7.	$\sigma\left((A + pl)L^{(t-1)}W^{(t)}\right)$	yes
GNN8.	$\sigma \left((D+I)^{-1/2} (A+pI) (D+I)^{-1/2} L^{(t-1)} W^{(t)} \right)$	yes
GNN3.	$ \frac{\sigma((A + pI)L^{(t-1)}W^{(t)})}{\sigma((D + I)^{-1/2}(A + pI)(D + I)^{-1/2}L^{(t-1)}W^{(t)})} \\ \frac{\sigma((rI + (1-r)D)^{-1/2}(A + pI)(rI + (1-r)D)^{-1/2}L^{(t-1)}W^{(t)})}{\sigma((rI + (1-r)D)^{-1/2}(A + pI)(rI + (1-r)D)^{-1/2}L^{(t-1)}W^{(t)})} $	yes
GNN1.	$ \overline{\sigma\left((D+I)^{-1/2}(A+I)(D+I)^{-1/2}L^{(t-1)}W^{(t)}\right)} $	no
GNN2.	$\sigma\left(D^{-1/2}AD^{-1/2}L^{(t-1)}W^{(t)}\right)$	no
GNN4.	$\sigma\left(\left(D^{-1/2}AD^{-1/2}+I\right)L^{(t-1)}W^{(t)}\right)$	no
GNN5.	$\sigma\left(D^{-1}AL^{(t-1)}W^{(t)}\right)$	no
GNN6.	$ \frac{\sigma((D+I)^{-1/2}(A+I)(D+I)^{-1/2}L^{(t-1)}W^{(t)})}{\sigma(D^{-1/2}AD^{-1/2}L^{(t-1)}W^{(t)})} $ $ \frac{\sigma(D^{-1/2}AD^{-1/2}L^{(t-1)}W^{(t)})}{\sigma(D^{-1/2}AD^{-1/2}+I)L^{(t-1)}W^{(t)})} $ $ \frac{\sigma(D^{-1/2}AD^{-1/2}+I)L^{(t-1)}W^{(t)})}{\sigma(D^{-1}AL^{(t-1)}W^{(t)})} $ $ \frac{\sigma(D^{-1/2}AD^{-1/2}+I)L^{(t-1)}W^{(t)})}{\sigma(D^{-1/2}AD^{-1/2}(A+I)L^{(t-1)}W^{(t)})} $	no

Conclusions

- When casting GNNs as MPNNs: carefully analyze what information message functions use!
- ▶ In case of degree information: distinguishing power still bounded by WL, but one step ahead.
- ▶ This is important since in practice GNN consist of a small number of layers.
- ▶ WL-powerful degree-aware GNNs: introduce learnable parameter p and use pI + A as aggregation matrix.

Research direction: Analyze distinguishing power of more general MPNN extensions in which message functions may depend on graph information beyond degrees.

Conclusions

- When casting GNNs as MPNNs: carefully analyze what information message functions use!
- ▶ In case of degree information: distinguishing power still bounded by WL, but one step ahead.
- ▶ This is important since in practice GNN consist of a small number of layers.
- ▶ WL-powerful degree-aware GNNs: introduce learnable parameter p and use pI + A as aggregation matrix.

▶ Research direction: Analyze distinguishing power of more general MPNN extensions in which message functions may depend on graph information beyond degrees.