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Context

Graph learning: vertex & graph classification, regression,...

l_Graph learning by means of graph embeddings

l_Graph embeddings computed by Message-Passing Neural Networks (MPNNs)

l_Distinguishing power of MPNNs

l_TheoreticaI analysis
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Graph Embeddings

graph embedding
—

discrete world of graphs continuous world of vectors in R®

» Parameters underlying embedding methods are learned for specific graph learning
tasks.

» Many graph embeddings methods can be seen as a Message-Passing Neural Network.’

1
I= Gilmer et al. Neural message passing for quantum chemistry. ICML 2017
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Message-Passing Neural Networks (MPNNs)

> |nitially: K\(,O) € R® is a hot-one encoding of the label of vertex v

> In layer t > 0:
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» In layer t > 0: Each vertex v receives messages from its neighbors based on the
previously computed vertex embeddings,

Vi
(fMSG(t) (D, 44Dy

M B, ANIse € £
V2 V3

4/1



Message-Passing Neural Networks (MPNNs)

> |nitially: K\(,O) € R® is a hot-one encoding of the label of vertex v
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Message-Passing Neural Networks (MPNNs)

> |nitially: K\(,O) € R® is a hot-one encoding of the label of vertex v

» In layer t > 0: Each vertex v receives messages from its neighbors based on the
previously computed vertex embeddings, which are then aggregated, and then further
updated based on the vertex own previous embedding:
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Message-Passing Neural Networks (MPNNs)

> |nitially: K\(,O) € R® is a hot-one encoding of the label of vertex v

> In layer t > 0: Each vertex v receives messages from its neighbors based on the
previously computed vertex embeddings, which are then aggregated, and then further
updated based on the vertex own previous embedding:

i
?MSG(t) (D, 44Dy

Msg® (estl)jeglc)))/«:%(;(f) (e‘(/tfl)’eg*l))_) m(vt) _ ZUENG(V)MSG“) (lst_l),ef,t_l)) c Rs,’
V2 V3

£ .= upp® (E(VH), mst)) e R

» Message and update functions contain learnable parameters.
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Message-Passing Neural Networks (MPNNs)

We emphasize:

» The message functions Msc(® in MPNNs only depend on the previously computed
vertex embeddings:

0 = UpD<f>(e<Vf‘1), > Msc;“)(e(vf*”,e(f”))eRSr,
ueNg(v)

» This will be important later on.
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Distinguishing Power

How well can MPNNSs distinguish vertices and graphs?

» The distinguishing power reflect the ability to distinguish vertices/graphs by means of
their vector embeddings.

» Important to understand, since it measures the loss of information by the embedding
method.

» For MPNNSs, the distinguish power can be characterized in terms of the Weisfeiler-
Lehman graph isomorphism test.?

= Weisfeiler and Lehman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsiya, 1968
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> Let Z(VO) be the initial label of vertex v

> In round t > 0, same recipe as for MPNNs:

Vi
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Weisfeiler-Lehman (WL) test
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Weisfeiler-Lehman (WL) test

> Let Z(VO) be the initial label of vertex v

* In round t > 0, same recipe as for MPNNs:
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Weisfeiler-Lehman (WL) test

> Let Z(VO) be the initial label of vertex v

* In round t > 0, same recipe as for MPNNs:

Vi

Tl(fl)
Vi
Z&é‘}'v‘\ego‘” — m{= multiset L€ | ue Ne(v)}

V2 V3
09 = HASH(ZSH)7 m(vt))

» In contrast to MPNNSs: No learnable parameters, HASH function is injective=most
distinguishing.
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Weisfeiler-Lehman (WL) test

» Classical, well-studied algorithm, used in graph isomorphism tests.

» WL is said to distinguish graphs G and H in t rounds when the multisets of labels
computed by WL in t rounds on both graphs differ. Formally:

(e |ve Vel = e | we Vi)

» The distinguishing power of WL is well-understood.>*

3
1= Grohe, M. Word2vec, node2vec, graph2vec, x2vec: To-wards a theory of vector embeddings of structured data. PODS, 2020

4
I= Sato, R. A survey on the expressive power of graph neural networks. ArXiv, 2020
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Distinguishing Power of MPNNs

The following is known:°

Theorem
» For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then
neither can any t-layer MPNN.

5

I’= Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019
6

I'= Xu et al. How powerful are graph neural networks? ICLR, 2019
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Distinguishing Power of MPNNs

The following is known:°

Theorem
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Distinguishing Power of MPNNs

The following is known:°

Theorem

» For any two graphs G and H, if WL cannot distinguish G from H in t rounds, then
neither can any t-layer MPNN.

» For any two graphs G and H, there exists an MPNN with precisely the same distin-
guishing power as the WL-test. In fact, this MPNN can be assumed to originate from
a “basic” Graph Neural Network (GNN).

5

I’= Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019
6

I’= Xu et al. How powerful are graph neural networks? ICLR, 2019
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Our Research Question

» Does this theorem apply to commonly used GNN architectures?

» |n other words, can common GNN architectures indeed be cast as MPNNs?
> Are they as powerful as WL?

We next look at:

» Basic Graph Neural Networks (for which the answer to these questions are known)

» Graph Convolutional Networks (for which a new analysis is needed)
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Basic Graph Neural Networks

> Layers are defined by:’
L(6) . U(L(t—l)Wgt) +/—\GL(t_1)W§t) o B(t))

» A is adjacency matrix of G, L() consists of feature vectors,

> Wgt) and Wgt) are learnable weight matrices, B(Y) is a constant bias matrix.

7
I’= Hamilton et al. Inductive representation learning on large graphs. NeurlPS, 2017
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Basic Graph Neural Networks

Layers are defined by:’
L= o (LW + AGLEDWED 4 BO)
A is adjacency matrix of G, L() consists of feature vectors,

Wgt) and Wgt) are learnable weight matrices, B(Y) is a constant bias matrix.

Indeed corresponds to an MPNN:
Msa(® (x,y) = yWét) + neighbors send their weighted features (y)
Urp (x,m) := a(xWit) +m+b(®) > own weighed feature (x) added

to aggregations of neighbors features (m)

So, the Theorem applies: distinguishing power of t layer basic GNNs cannot exceed
that of a t round WL test.

7
I’= Hamilton et al. Inductive representation learning on large graphs. NeurlPS, 2017
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Graph Convolution Networks

> Very popular architecture in which layers are defined by:®
L) := o (D™2(1 + Ag)D 2L DWW 1 B

» D is diagonal matrix consisting of degrees d, for v e V.

8
1= Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017
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Graph Convolution Networks

Very popular architecture in which layers are defined by:®
L) := o (D™2(1 + Ag)D 2L DWW 1 B

D is diagonal matrix consisting of degrees d,, for v e V.

i

A GCN can distinguish v from w with one layer, but WL cannot in one round!

Previous theorem does not apply! A GCN is not a “standard” MPNN.

8
1= Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017
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Graph Convolution Networks

» What happened?

oo

» A GCN detects immediately that:
v is adjacent to a red vertex of degree three
w is adjacent to a red vertex of degree one.

> By contrast, WL only observes the colors.
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Degree-aware MPNNs

To see GCNs as MPNNs, we extend the message functions with degree information:

Proposal: Degree-aware MPNNs:

As before, let Z(VO) € R® be a hot-one encoding of the label of vertex v.

Then, in layer t a degree-aware MPNN computes a new vertex-labelling for each
vertex:

6= Upp@ (g, S Mse® (el 60V, d,. d,)) e R*,
ueNg(v)

where now UpD(®) has extra arguments.
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Degree-aware MPNNs vs standard MPNNSs

Proposition
Any degree-aware MPNN consisting of t layers, can be simulated by an MPNN consisting
of t +1 layers.

Idea: use the first layer of the MPNN to compute degrees, add these to the labels in
subsequent layers.
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Degree-aware MPNNs vs standard MPNNSs

Proposition
Any degree-aware MPNN consisting of t layers, can be simulated by an MPNN consisting
of t +1 layers.

Idea: use the first layer of the MPNN to compute degrees, add these to the labels in
subsequent layers.

» Thus, for any two graphs G and H, if WL cannot distinguish G from H in t+1 rounds,
then neither can any degree-aware t layer MPNN.

» Degree-aware MPNNs (such as GCNs) may have an advantage over standard MPNNs
in terms of number of layers. So, let's agree to degree!
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Degree-aware MPNNs

Not all degree-aware MPNNSs are one step ahead:

GNN architectures using degreesg’lo'11 bounded by
GNNL. | o ((D+1) " (A+ (D +1) LEDWD) WL+1 step
GNN2. | o D*l/ZAD*1/2L<t-1>W(f>) WL+1 step
GNN3. | o ((rl+(1-r)D) ¥(A+pl)(rl+(1-r)D) LETDWO) | WL+1 step
GNN4. | o ((D*AD ™ + |)L<f—1)vv<t>) WL+1 step
~ GNNS. | 707(5117&(7‘:17%/@)7 - we
GNN6. | o ((D+I)‘1(A+I)L(H)W(t)) WL

If GNNs only use degrees after aggregation, then they can be cast as standard MPNNs.

9
1= Kipf and Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017
10
I'=Wu et al. Simplifying graph convolutional networks. ICML, 2019
11
I’= Meltzer et al. Pinet: A permutation invariant graph neural network for graph classification. arXiv, 2019
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WL-powerful MPNNs

Recall:'?

Theorem
For any two graphs G and H, there exists a basic GNN that can distinguish these graphs
when WL can distinguish them too.

» So, the class of basic GNNs is as powerful as WL.

> Still true for GCNs?
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WL-powerful MPNNs

Recall:'?

Theorem
For any two graphs G and H, there exists a basic GNN that can distinguish these graphs
when WL can distinguish them too.

» So, the class of basic GNNs is as powerful as WL.

» Still true for GCNs? Nol!

oo

» WL can distinguish these two vertices, GCNs cannot!

12
1= Morris et al. Weisfeiler and Leman go neural: Higher-order graph neural networks. AAAI, 2019
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WL-powerful GCNs

» Reason that GCNs cannot distinguish vertices in

is not because of degree information but simply because of use of / + A as aggregation

matrix.
11
[+A= (1 1)

So all features are propagated in the same way for both vertices.

» For the example graph,
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WL-powerful GCNs

Reason that GCNs cannot distinguish vertices in

is not because of degree information but simply because of use of / + A as aggregation

matrix.
11
[+A= (1 1)

So all features are propagated in the same way for both vertices.

For the example graph,

Solution: consider pl + A for parameter 0 < p < 1 instead!

The use of parameter p was empirically motivated by Kipf and Welling.
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Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

L® 2= o(diag(g) (A + pl)diag(h)LEDWE + BO),
where g and h are degree-determined vectors (hold identical values for vertices having
same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these
graphs when WL can distinguish them too. In addition, the parameter p can be chosen
uniformly across layers.
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Main Result: WL-powerful GCNs

Consider general degree-based MPNNs based on generalized GCNs with layers:

L® 2= o(diag(g) (A + pl)diag(h)LEDWE + BO),
where g and h are degree-determined vectors (hold identical values for vertices having
same degrees)

Theorem (Main result)

For any two graphs G and H, there exists a generalized GCN that can distinguish these
graphs when WL can distinguish them too. In addition, the parameter p can be chosen
uniformly across layers.

> Applies to basic GCNs by Kipf and Welling: o (D +1) (A + pl)(D + 1) LD w(®))

» Theoretical justification of the parameter p!
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WL-powerful GCNs

GNN architectures using degrees

as strong as WL?

o ((A+pHLEDWD)
((D + I)'1/2(A +ph)(D+1)7L <f—1>vv(f>)
o ((E) 1?)7172 (A+1)(D+1) T/27L(f715v7\/<7)7) 777777
o (D AD LW
o ((DAD 4 LEDWD)
o (D ALETDW )
o (D) (A+HLEDWD)

yes

yes

20/ 1



Conclusions

When casting GNNs as MPNNs: carefully analyze what information message functions
use!

In case of degree information: distinguishing power still bounded by WL, but one step
ahead.

This is important since in practice GNN consist of a small number of layers.

WL-powerful degree-aware GNNs: introduce learnable parameter p and use p/ + A as
aggregation matrix.
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Conclusions

When casting GNNs as MPNNs: carefully analyze what information message functions
use!

In case of degree information: distinguishing power still bounded by WL, but one step
ahead.

This is important since in practice GNN consist of a small number of layers.

WL-powerful degree-aware GNNs: introduce learnable parameter p and use p/ + A as
aggregation matrix.

Research direction: Analyze distinguishing power of more general MPNN extensions
in which message functions may depend on graph information beyond degrees.
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