Adversarial Dueling Bandits

Aadirupa Saha ${ }^{[1]}$, Tomer Koren ${ }^{[2]}$, Yishay Mansour ${ }^{[2]}$

[1] Microsoft Research, New York City
[2] Blavatnik School of Computer Science, Tel Aviv University, \& Google Research Tel Aviv.

Problem Overview: Dueling Bandits Learning from Preferences

Absolute vs. Relative preferences

\leftarrow Ratings (Absolute)
--- How much you score it out of

Rankings (Relative) \rightarrow
--- Do you like movie A over B?

Often easier (\& more accurate) to elicit relative preferences than absolute scores

Restaurant recommendation

Search engine optimization:

Google YАноО!

 eb.ics.purdue. edul-cs 159 . ug 16.2012-CS 159 introducs oliving in Engine sential for crealive prob and
 is sisu edu) ...) Chun, Roberinaion hariware a all processing alcomin unv.jisu.edu) Cation. A combinatitite aded
in 20,2015 - Destips
3velopment class focused on mise asing - In

- Parallel Processing Stite University

159: Introduction to P aran Jose state University parallel architic cture
is 159 : Introd, courses ${ }^{\text {F }}$ San Jos.
fo. Sisu. edu), ction to parallel Processing, MIMD.

lared memory, distrin lab Purdue - YouTubiog
iuy falls asleep in CSTLw.youtube.com/walch? http: Ilww.

S 159. Advanced Topicscs1591 (spring 2016). Cou
S 159. Adve. comicoursesicsine Laaming (Spring 20 Learring ww. yisongyue. Advanced Topics in Mach forllowing topics
S 159: Advancou a mixture of the fold complexity
,urse will cover a computational Conntiversity " Hours LLaTeX. An . Introduction to Computhl - Brown ins staff and How
 ;.brown.educ info \mid Assignments
high probability bounds
preference matrix
information retrieval application remaining arms
optimistic estima tes.andom variables nite-horizon setting . Regret bounds relative upper confidence $D \underbrace{\text { Pe }}_{\text {explortion phase }}$

More Formally: Dueling Bandits (Learning from pairwise preferences)

Adversarial Dueling: Almost no existing works!

1. Gajane et al. A relative exponential weighing algorithm for adversarial utilitybased dueling bandits. ICML 2015.

- Very restricted setup of utilitybased preferences?

2. Dudik et al. Contextual Dueling Bandits. COLT 2015.

- 1) Contextual scenario, vonNeumann winner. 2) No efficient optimal regret algorithms

Challenges

- Assumptions on $\boldsymbol{P}_{\boldsymbol{t}}$?
- Notion of bench-mark (best arm) to measure regret ?
- Only 1 bit feedback per $\boldsymbol{P}_{\boldsymbol{t}}$!

Our Problem Setup

Problem Setup:

Adversarial Dueling Bandits: Sequential games of T rounds

Finite Action/arm space:

$$
[K]=\{1,2, \ldots K\}
$$

At round $t=1,2, \ldots, T$

- Environment chooses P_{t}
- Play duel $\left(x_{t}, y_{t}\right) \in[K] x[K]$
- Receive feedback $o_{t} \sim \operatorname{Ber}\left[P_{t}\left(x_{t}, y_{t}\right)\right]$

End

Regret objective:

Regret w.r.t. cumulative Borda-winner

$$
\begin{aligned}
& \text { Borda Regret } R_{T}:=\sum_{t=1}^{T} b_{t}\left(i^{*}\right)-\frac{1}{2}\left(b_{t}\left(x_{t}\right)+b_{t}\left(y_{t}\right)\right) \\
& \text { where, Borda-score of Item-i: } b_{t}(i):=\frac{1}{K-1} \sum_{j \neq i} P_{t}(i, j) \\
& \text { and, cumulative Borda-winner: } i^{*}:=\underset{i \in[K]}{\arg \max } \sum_{t=1}^{T} b_{t}(i)
\end{aligned}
$$

Summary of Results

Our results:

Lower Bound

(A trivial lower bound from $M A B$)

$$
\Omega(K / \Delta \log T)
$$

- Oure results: $\Omega\left(\min \left(\Delta T, K / \Delta^{2}\right)\right)$
- Gap-dependent: $\Omega\left(K / \Delta^{2}\right)$
- Worst-case: $\Omega\left(K^{1 / 3} T^{2 / 3}\right)$

Our upper bounds

- Expected regret:

$$
\mathbf{E}\left[R_{T}\right] \leq 6(K \log K)^{1 / 3} T^{2 / 3}
$$

(1-ס)-High probability regret:

$$
R_{T}=\tilde{O}\left(K^{1 / 3} T^{2 / 3}\right)
$$

- Fixed-gap setting:

$$
\mathrm{O}\left(\left(K / \Delta^{2}\right) \log (2 K T / \delta)\right)
$$

$$
\Delta=\min _{i \in[K] \backslash\left\{i^{*}\right\}} \Delta_{i} \text { where } \Delta_{i}=b\left(i^{*}\right)-b(i)
$$

Lower Bound

Hard instance constructions:

Proposed Algorithm Regret Upper Bound

Algorithmic ideas:

```
Algorithm 1 Dueling-EXP3 (D-EXP3)
    Input: Item set indexed by [ \(K\), learning rate \(\eta>0\), parameters \(\gamma \in(0,1)\)
    Initialize: Initial probability distribution \(q_{1}(i)=1 / K, \forall i \in[K]\)
    for \(t=1, \ldots, T\) do
        Sample \(x_{t}, y_{t} \sim q_{t}\) i.i.d. (with replacement)
    5: Receive preference \(o_{t}\left(x_{t}, y_{t}\right) \sim \operatorname{Ber}\left(P_{t}\left(x_{t}, y_{t}\right)\right)\)
    6: \(\quad\) Estimate scores, for all \(i \in[K]\) :
\[
\tilde{s}_{t}(i)=\frac{\mathbf{1}\left(x_{t}=i\right)}{K q_{t}(i)} \sum_{j \in[K]} \frac{\mathbf{1}\left(y_{t}=j\right) o_{t}\left(x_{t}, y_{t}\right)}{q_{t}(j)}
\]
7: \(\quad\) Update, for all \(i \in[K]\) :
\[
\tilde{q}_{t+1}(i)=\frac{\exp \left(\eta \sum_{\tau=1}^{t} \tilde{s}_{\tau}(i)\right)}{\sum_{j=1}^{K} \exp \left(\eta \sum_{\tau=1}^{t} \tilde{s}_{\tau}(j)\right)} \quad ; \quad q_{t+1}(i)=(1-\gamma) \tilde{q}_{t+1}(i)+\frac{\gamma}{K}
\]
end for
```

Unbiased estimate of Borda-score from 1 bit feedback! $\mathbf{E}\left[\tilde{s}_{t}(i)\right]=s_{t}(i)$

Experiments:

Figure 1. Averaged cumulative regret over time

In a nutshell:

- Problem formulation: Adversarial Dueling Bandits with Borda regret
- Upper bound algorithm: (Expected + High probability + Gap-dependent) regret
- Lower bound justifies tightness and algorithm's optimality

Future Works:

- Other notions of winners: Cordorcet, von-Neumann etc.
- Better rates? Under what assumptions we can attain $\Theta(\sqrt{K T})$?
- Extending dueling-bandits: Feedback graphs? General side information/ partial monitoring games?

Thanks!

Questions @ aasa@microsoft.com

