Adversarial Dueling Bandits

Aadirupa Saha^[1], Tomer Koren^[2], Yishay Mansour^[2]
[1] Microsoft Research, New York City
[2] Blavatnik School of Computer Science, Tel Aviv University, & Google Research Tel Aviv.

38th International Conference on Machine Learning, 2021

Problem Overview: Dueling Bandits Learning from Preferences

Absolute vs. Relative preferences

← Ratings (Absolute)

--- How much you score it out of 🛛 🗶

Rankings (Relative) → --- Do you like movie A over B?

Often easier (& more accurate) to elicit *relative preferences* than *absolute scores*

Restaurant recommendation

Atlanta | Boston | Chicago | Las Vegas | Los Angeles | Miami | New Orleans | New York | San Francisco | Washington, DC | More...

Search engine optimization:

high probability bounds preference matrix information retrieval application remaining arms optimistic estimatesrandom variables nite-horizon setting Regret bounds relativ ve different runs evaluation process roblem ^{empirical results} pij lij uij exploration phase dealing IFT BT<u>MT</u> species ndit regular K-armed banditRemi Munos higher moments Nij wij Regular UCB BTM and SAVAGE tider bounds Oh ce Condorcet winner exploration horizon Mean Joachims horizonless setting potential champion cumulative regret pairwise probabilities

Adversarial Dueling: Almost no existing works!

1. Gajane et al. *A relative exponential weighing algorithm for adversarial utility-based dueling bandits.* ICML 2015.

- Very restricted setup of utilitybased preferences?
- 2. Dudik et al. *Contextual Dueling Bandits.* COLT 2015.
 - 1) Contextual scenario, von-Neumann winner. 2) No efficient optimal regret algorithms

Challenges

• Assumptions on **P**_t ?

• Notion of bench-mark (best arm) to measure regret ?

• Only 1 bit feedback per **P**_t !

Our Problem Setup

Problem Setup:

Adversarial Dueling Bandits: Sequential games of T rounds


```
Finite Action/arm space:
[K] = {1,2,...K}
```

At round t = 1,2,...,T

- Environment chooses P_t
- Play duel $(x_t, y_t) \in [K]x[K]$

- Receive feedback $o_t \sim Ber[P_t(x_t, y_t)]$

End

Regret objective:

Regret w.r.t. cumulative Borda-winner

Borda Regret
$$R_T := \sum_{t=1}^T b_t(i^*) - \frac{1}{2}(b_t(x_t) + b_t(y_t))$$

where, Borda-score of Item-i: $b_t(i) := \frac{1}{K-1} \sum_{j \neq i} P_t(i, j)$

and, cumulative Borda-winner:
$$i^* := \underset{i \in [K]}{\operatorname{arg max}} \sum_{t=1}^T b_t(i)$$

Summary of Results

Our results:

Lower Bound

(A trivial lower bound from MAB) $\Omega(K/\Delta \log T)$

- Oure results: $\Omega(\min(\Delta T, K/\Delta^2))$
 - Gap-dependent: $\Omega(K/\Delta^2)$
 - Worst-case: $\Omega(K^{1/3}T^{2/3})$

Our upper bounds

• Expected regret: $\mathbf{E}[R_T] \le 6(K \log K)^{1/3} T^{2/3}$

(1-
$$\delta$$
)-High probability regret:
 $R_T = \tilde{O}(K^{1/3}T^{2/3})$

• Fixed-gap setting:

 $O((K/\Delta^2)\log(2KT/\delta))$

 $\Delta = \min_{i \in [K] \setminus \{i^*\}} \Delta_i \quad \text{where} \quad \Delta_i = b(i^*) - b(i)$

Lower Bound

Proposed Algorithm Regret Upper Bound

Algorithmic ideas:

Algorithm 1 Dueling-EXP3 (D-EXP3)

- 1: Input: Item set indexed by [K], learning rate $\eta > 0$, parameters $\gamma \in (0, 1)$
- 2: Initialize: Initial probability distribution $q_1(i) = 1/K, \forall i \in [K]$
- 3: for t = 1, ..., T do
- 4: Sample $x_t, y_t \sim q_t$ i.i.d. (with replacement)
- 5: Receive preference $o_t(x_t, y_t) \sim \text{Ber}(P_t(x_t, y_t))$
- 6: Estimate scores, for all $i \in [K]$:

$$\tilde{s}_t(i) = \frac{\mathbf{1}(x_t = i)}{Kq_t(i)} \sum_{j \in [K]} \frac{\mathbf{1}(y_t = j)o_t(x_t, y_t)}{q_t(j)}$$

7: Update, for all
$$i \in [K]$$
:

$$\tilde{q}_{t+1}(i) = \frac{\exp(\eta \sum_{\tau=1}^{t} \tilde{s}_{\tau}(i))}{\sum_{j=1}^{K} \exp(\eta \sum_{\tau=1}^{t} \tilde{s}_{\tau}(j))} \quad ; \quad q_{t+1}(i) = (1-\gamma)\tilde{q}_{t+1}(i) + \frac{\gamma}{K}$$

8: **end for**

Unbiased estimate of Borda-score from 1 bit feedback! $\mathbf{E}[\tilde{s}_t(i)] = s_t(i)$

Experiments:

Figure 1. Averaged cumulative regret over time

In a nutshell:

- Problem formulation: Adversarial Dueling Bandits with Borda regret
- Upper bound algorithm: (Expected + High probability + Gap-dependent) regret
- Lower bound justifies tightness and algorithm's optimality

Future Works:

- Other notions of winners: Cordorcet, von-Neumann etc.
- Better rates? Under what assumptions we can attain $\Theta(\sqrt{KT})$?
- Extending dueling-bandits: Feedback graphs? General side information/ partial monitoring games?

Thanks!

Questions @ aasa@microsoft.com