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Problem Overview

Bandit Convex Optimization



Problem: Online Convex Optimization

Classical problem of Online Convex Optimization (OCO)

{f1, fos.. s [i}: D— R?

Decision space:

D C R
° Atroundt=1,2,...T
x € R¢ - Environment chooses f,
- Play point x, € D
f . D — RA - Receive feedback at x,
Convex End
First order feedback: Zeroth order feedback:

Gradient information Vft (Xt) Function value f, (Xt)



Zeroth order / Bandit Convex Optimization

Regret (minimization) in T time steps:

Adversary T T
3 Rp:= f(w)—mir}l f:(w)
*{a %‘ T tZl t\We DeR ; t
Learner

Loss f; is unobserved every round

Only black-box or zeroth-order access to loss



Results known:

For general (convex) function lower bound = Q(dﬁ)

- Gradient descent (w/ 1 point gradient estimate)

[Flaxman et al, Online convex optimization in the bandit setting: gradient descent without a gradient., 2005]

- More structures: Linear, Strong convexity or Smooth functions

[Saha and Tewari, Improved regret guarantees for online smooth convex optimization with bandit feedback, 2011]

- Multipoint estimates

[Ghadimi and Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming, 2013]
- Optimal algorithm O(poly(d)\/T)

[Hazan and Li, An optimal algorithm for bandit convex optimization, 2016]

[Bubeck et al, Kernel-based methods for bandit convex optimization, 2017]



Pseudold Bandit Convex Optimization:
Composite and Structured Functions



Pseudold BCO:
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Pseudo-1d loss: fe(w) = £.(g(w; x¢))

Loss ¢4 is unobserved every round learner has point-only or zeroth-order access

But g is known to the learner, say g(w; x;) =< w.x; >



Applications: Self-Tune Framework (and many more....)

m Client API
n_ Large-scale parameter tuning in

systems & software:
feedback - online tuning
- reward/loss function is unobserved
- feedback is often expensive/limited

predictighs

aa Scenarios/

Algorithms



Pseudold Regret minimization?

T
Rr:= Eft(wt) — mln Eft(w)
t=1



Let’s try Gradient Descent!

Online Gradient Descent: For convey, Lipschitz f;, Regret = O (\/ET3/ 4)

1. Estimate Vy, fe(we) ~ [Flaxman et al, Online convex optimization in the bandit setting:
2. Wi = W — 77wat (Wt) Gradient descent without a gradient., 2005]
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Careful Gradient Descent!

Can exploit Pseudo-1d structure:

Independent of dimension d
1. Estimate V,, f, (w,) = 32((xi, Wt)) Xt Q >

2. Wi = Wi — NV, fr(We)
[Our work]

For conve, Lipschitz losses, Regret = 0(T3/%)

|¢:(a) —¥:(a")|<Lla—a'|,a,a’ €R



Main Question:

Improved learning rate O(\/T)?
Independent of dimension d?



What is the Lower Bound (in d and T)?




An Optimal O (\/(TT) Algorithm?
Kernelized Exponential Weight



Kernelized EXP3:

Algorithm 2 Kernelized Exponential Weights for PBCO

1: Input: learning rate: 7 > 0, € > 0, max rounds 7'.

2: Inmitialize: w; < 0,p;

3: fort =1,2,---T do

4:  Receive x4, and define G, = {g(w,x;) | w €
W} CR

5:  Define q; such that dq;(y) := th(y) dp¢(w), Vy €
Ge, where Wi (y) :={w e W | gs(w,x¢) = y}

6: Using x; and q;, and given ¢, define kernel K} :
G; x G; — R (according to Definition 4)

7. Sample y; ~ K/ q; and pick any w; € W;(y;) uni-
formly at random

8: Play gi(wy;x¢) and receive loss fi(wy) =
0 (g (Wiixt))

1
vol(W)

Regret Guarantee:

For convex & Lipschitz ¢,

Regret = O (\/ﬁ )

Estimating f.(w) VYw

Exponential wt update

) [ ﬁi(wf) / |
9O | filw) < —/———=Ki(y,y), for all w ¢ <
. 1t () y
W(y),Vy € G, > estimator of f;
( w)exp ( — w h
10: | Pry1(W) < P ~) D 7’]th( - ) —, for all <
[ pe(W) exp (= nfi(w))dw
w_c W J

11: end for




Experiments:
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In a nutshell:

* Problem formulation: Pseudo 1d bandit convex optimization
* Proposed algorithms: Design optimal algorithms + Analysis

* Understand fundamental performance limit (regret lower bound)

Future Works:

 Understand the problem complexity for higher dimensional £( )?

e Can we design an unified algorithm with regret O (min (\/ dT, T3/4))?



Thanks!

Questions @ aasa@microsoft.com



