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Problem Overview 

Bandit Convex Optimization



Problem: Online Convex Optimization

At round t = 1,2,…,T

- Environment chooses ft

- Play point xt ϵ D

- Receive feedback at xt

End 

Classical problem of Online Convex Optimization (OCO)

Decision space: 

First order feedback: 
Gradient information     

Zeroth order feedback: 
Function value  

Convex



Zeroth order / Bandit Convex Optimization

Regret (minimization) in T time steps:

Adversary

Learner

𝑅𝑇: = ෍

𝑡=1

𝑇

𝑓𝑡 𝒘𝒕 − min
𝒘∈ℝ𝒅

෍

𝑡=1

𝑇

𝑓𝑡 𝒘

Only black-box or zeroth-order access to loss

Loss 𝒇𝒕 is unobserved every round 



Results known:

For general (convex) function lower bound = Ω(𝑑 𝑇)

- Gradient descent (w/ 1 point gradient estimate)

- More structures: Linear, Strong convexity or Smooth functions

- Multipoint estimates

- Optimal algorithm 𝐎 𝐩𝐨𝐥𝐲(𝒅) 𝑻

[Bubeck et al, Kernel-based methods for bandit convex optimization, 2017] 

[Flaxman et al, Online convex optimization in the bandit setting: gradient descent without a gradient., 2005] 

[Saha and Tewari, Improved regret guarantees for online smooth convex optimization with bandit feedback, 2011] 

[Ghadimi and Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming, 2013] 

[Hazan and Li, An optimal algorithm for bandit convex optimization, 2016] 



Pseudo1d Bandit Convex Optimization:
Composite and Structured Functions



Adversary

Learner

Pseudo-1d loss: 𝑓𝑡 𝒘 = ℓ𝑡(𝑔 𝒘; 𝑥𝑡 )

Loss ℓ𝑡 is unobserved every round learner has point-only or zeroth-order access

But 𝑔 is known to the learner, say 𝑔 𝒘; 𝑥𝑡 =< 𝒘. 𝑥𝑡 >

1

2

3

Pseudo1d BCO:



Applications: Self-Tune Framework (and many more….)

predictions

feedback

Client API

Scenarios/

Algorithms

Large-scale parameter tuning in 

systems & software:

- online tuning

- reward/loss function is unobserved

- feedback is often expensive/limited

Client API



Pseudo1d Regret minimization?

𝑅𝑇: = ෍

𝑡=1

𝑇

𝑓𝑡 𝒘𝒕 − min
𝒘∈ℝ𝒅

෍

𝑡=1

𝑇

𝑓𝑡 𝒘



Online Gradient Descent:

1. Estimate ෩∇𝒘𝑓𝑡 𝒘𝒕

2. 𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜂෩∇𝒘𝑓𝑡 𝒘𝒕

Let’s try Gradient Descent!

For convex, Lipschitz 𝑓𝑡, Regret = O 𝑑𝑇3/4

[Flaxman et al, Online convex optimization in the bandit setting: 
Gradient descent without a gradient., 2005] 



Careful Gradient Descent!

Can exploit Pseudo-1d structure:

1. Estimate ෩∇𝒘𝑓𝑡 𝒘𝒕 = ℓ𝑡
′ ⟨𝒙𝒊, 𝒘𝒕⟩ . 𝒙𝒕

2. 𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜂෩∇𝒘𝑓𝑡 𝒘𝒕

[Our work] 

For convex, Lipschitz losses, Regret = 𝐎 𝑻𝟑/𝟒

|ℓ𝑡 𝑎 − ℓ𝑡 𝑎
′ | ≤ 𝐿 𝑎 − 𝑎′ , 𝑎, 𝑎′ ∈ ℝ

Independent of dimension d



Main Question:
Improved learning rate O( 𝑇)?
Independent of dimension d?



What is the Lower Bound (in d and T)?

In the worst case, any algorithm has to suffer expected regret:

𝔼 ෍

𝑡=1

𝑇

ℓ𝑡 ⟨𝒙𝒕, 𝒘𝒕⟩ − min
𝒘∈ℝ𝒅

෍

𝑡=1

𝑇

ℓ𝑡 𝒙𝒕, 𝒘 = Ω min 𝑑𝑇, 𝑇3/4



An Optimal O 𝑑𝑇 Algorithm?

Kernelized Exponential Weight



Kernelized EXP3:

Exponential wt update

Estimating f𝑡 𝒘 ∀𝒘

Regret Guarantee:

For convex & Lipschitz ℓ𝑡, 

Regret = O 𝑑𝑇



Experiments:

Kernelized EXP3

Online Gradient Descent

Squared loss ℓ𝒕 Absolute loss ℓ

Linear 𝒈𝒕

Squared loss ℓ𝒕 Absolute loss ℓ

Linear 𝒈𝒕



In a nutshell:

Future Works: 

• Problem formulation: Pseudo 1d bandit convex optimization

• Proposed algorithms: Design optimal algorithms + Analysis 

• Understand fundamental performance limit (regret lower bound)

• Understand the problem complexity for higher dimensional ℓ ?

• Can we design an unified algorithm with regret O 𝑚𝑖𝑛 𝑑𝑇, 𝑇3/4 ? 



Thanks!

Questions @ aasa@microsoft.com


