Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization

Aadirupa Saha^[1], Nagarajan Natarajan^[2], Praneeth Netrapallli ^[2,3], Prateek Jain ^[2,3]

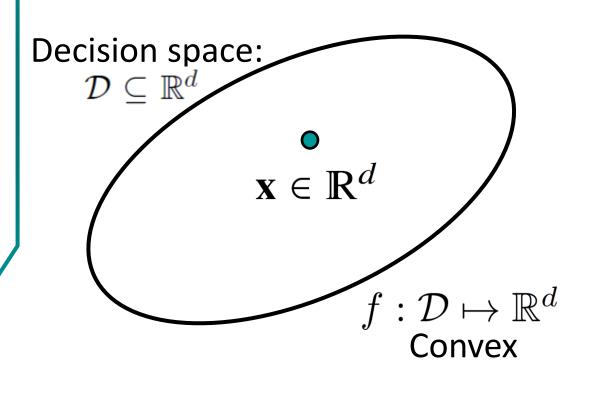
- [1] Microsoft Research, New York City, USA
- [2] Microsoft Research, Bangalore, India
- [3] Authors currently in Google Research, Bangalore, India

38th International Conference on Machine Learning, 2021

Problem Overview Bandit Convex Optimization

Problem: Online Convex Optimization

Classical problem of Online Convex Optimization (OCO)



$$\{f_1, f_2, \dots, f_t\} : \mathcal{D} \mapsto \mathbb{R}^d$$

At round t = 1, 2, ..., T

- Environment chooses f
- Play point $x_{+} \in D$
- Receive feedback at x_t

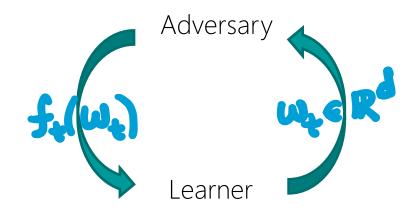
End

First order feedback: Gradient information $\nabla f_t(\mathbf{x}_t)$

Zeroth order feedback: Function value $f_t(\mathbf{x}_t)$

Zeroth order / Bandit Convex Optimization

Regret (minimization) in T time steps:



$$R_T := \sum_{t=1}^T f_t(\boldsymbol{w_t}) - \min_{\boldsymbol{w} \in \mathbb{R}^d} \sum_{t=1}^T f_t(\boldsymbol{w})$$

Loss f_t is unobserved every round

Only black-box or zeroth-order access to loss

Results known:

For general (convex) function lower bound = $\Omega(d\sqrt{T})$

- Gradient descent (w/ 1 point gradient estimate)

[Flaxman et al, Online convex optimization in the bandit setting: gradient descent without a gradient., 2005]

- More structures: Linear, Strong convexity or Smooth functions

[Saha and Tewari, Improved regret guarantees for online smooth convex optimization with bandit feedback, 2011]

- Multipoint estimates

[Ghadimi and Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming, 2013]

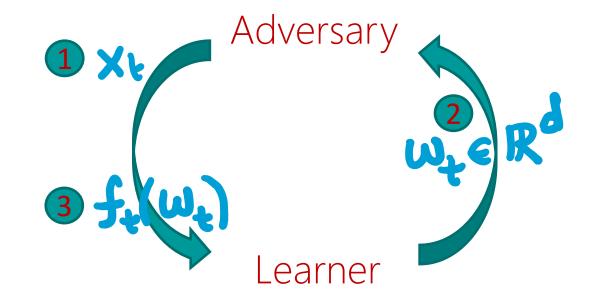
- Optimal algorithm $O(poly(d)\sqrt{T})$

[Hazan and Li, An optimal algorithm for bandit convex optimization, 2016]

[Bubeck et al, Kernel-based methods for bandit convex optimization, 2017]

Pseudo1d Bandit Convex Optimization: Composite and Structured Functions

Pseudo1d BCO:

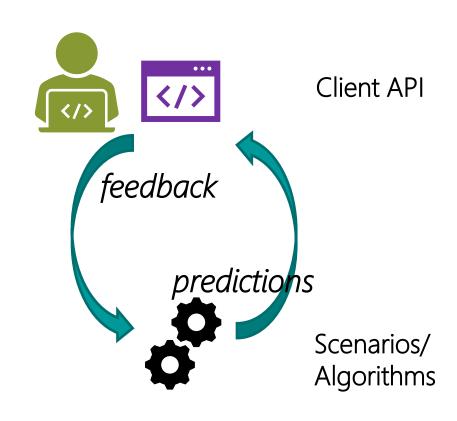


Pseudo-1d loss: $f_t(\mathbf{w}) = \ell_t(g(\mathbf{w}; x_t))$

Loss ℓ_t is unobserved every round learner has point-only or zeroth-order access

But g is known to the learner, say $g(w; x_t) = \langle w. x_t \rangle$

Applications: Self-Tune Framework (and many more....)



Large-scale parameter tuning in systems & software:

- online tuning
- reward/loss function is unobserved
- feedback is often expensive/limited

Pseudo1d Regret minimization?

$$R_T := \sum_{t=1}^T f_t(\boldsymbol{w_t}) - \min_{\boldsymbol{w} \in \mathbb{R}^d} \sum_{t=1}^T f_t(\boldsymbol{w})$$

Let's try Gradient Descent!

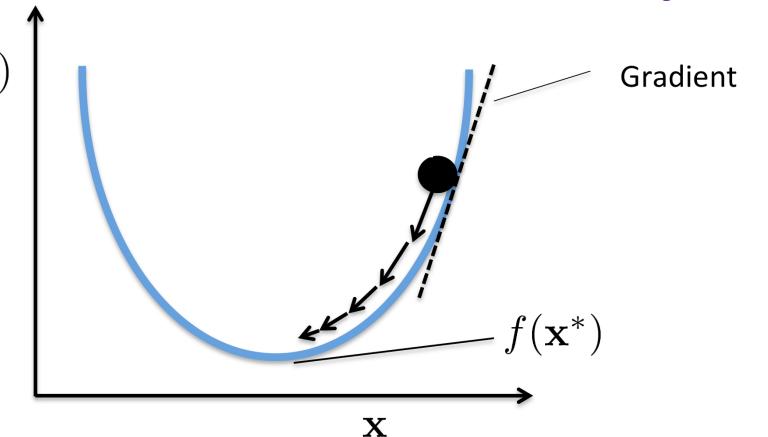
Online Gradient Descent:

1. Estimate $\widetilde{\nabla}_{\boldsymbol{w}} f_{t}(\boldsymbol{w_{t}})$

2.
$$\mathbf{w_{t+1}} = \mathbf{w_t} - \eta \widetilde{\nabla}_{\mathbf{w}} f_t(\mathbf{w_t})$$

For convex, Lipschitz f_t , Regret = $O\left(\sqrt{d}T^{3/4}\right)$

[Flaxman et al, Online convex optimization in the bandit setting: Gradient descent without a gradient., 2005]



Careful Gradient Descent!

Can exploit Pseudo-1d structure:

1. Estimate
$$\widetilde{\nabla}_{w} f_{t}(w_{t}) = \ell'_{t}(\langle x_{i}, w_{t} \rangle) \cdot x_{t}$$

2.
$$\mathbf{w_{t+1}} = \mathbf{w_t} - \eta \widetilde{\nabla}_{\mathbf{w}} f_t(\mathbf{w_t})$$

[Our work]

For convex, Lipschitz losses, Regret = $O(T^{3/4})$

$$|\ell_t(a) - \ell_t(a')| \le L|a - a'|, a, a' \in \mathbb{R}$$

Independent of dimension d

Main Question:

Improved learning rate $O(\sqrt{T})$? Independent of dimension d?

What is the Lower Bound (in d and T)? Improvement factor 0 In the worst case, any along

An Optimal $O\left(\sqrt{dT}\right)$ Algorithm? Kernelized Exponential Weight

Kernelized EXP3:

Algorithm 2 Kernelized Exponential Weights for PBCO

- 1: **Input:** learning rate: $\eta > 0$, $\epsilon > 0$, max rounds T.
- 2: Initialize: $\mathbf{w}_1 \leftarrow \mathbf{0}, \mathbf{p}_1 \leftarrow \frac{1}{\text{vol}(\mathcal{W})}$.
- 3: **for** $t = 1, 2, \dots T$ **do**
- 4: Receive \mathbf{x}_t , and define $\mathcal{G}_t := \{g_t(\mathbf{w}, \mathbf{x}_t) \mid \mathbf{w} \in \mathcal{W}\} \subseteq \mathbb{R}$
- 5: Define \mathbf{q}_t such that $d\mathbf{q}_t(y) := \int_{\mathcal{W}_t(y)} d\mathbf{p}_t(\mathbf{w}), \forall y \in \mathcal{G}_t$, where $\mathcal{W}_t(y) := \{ \mathbf{w} \in \mathcal{W} \mid g_t(\mathbf{w}, \mathbf{x}_t) = y \}$
- 6: Using \mathbf{x}_t and \mathbf{q}_t , and given ϵ , define kernel \mathbf{K}'_t : $\mathcal{G}_t \times \mathcal{G}_t \mapsto \mathbb{R}$ (according to Definition 4)
- 7: Sample $y_t \sim \mathbf{K}_t' \mathbf{q}_t$ and pick any $\mathbf{w}_t \in \mathcal{W}_t(y_t)$ uniformly at random
- 8: Play $g_t(\mathbf{w}_t; \mathbf{x}_t)$ and receive loss $f_t(\mathbf{w}_t) = \ell_t(g_t(\mathbf{w}_t; \mathbf{x}_t))$
- 9: $\begin{cases} \tilde{f}_t(\mathbf{w}) & \leftarrow & \frac{f_t(\mathbf{w}_t)}{\mathbf{K}_t'\mathbf{q}_t(y_t)}\mathbf{K}_t'(y_t, y), \text{ for all } \mathbf{w} \in \end{cases}$

 $W(y), \forall y \in \mathcal{G}_t$ \triangleright estimator of f_t

10: $\mathbf{p}_{t+1}(\mathbf{w}) \leftarrow \frac{\mathbf{p}_{t}(\mathbf{w}) \exp\left(-\eta f_{t}(\mathbf{w})\right)}{\int_{\tilde{\mathbf{w}}} \mathbf{p}_{t}(\tilde{\mathbf{w}}) \exp\left(-\eta \tilde{f}_{t}(\tilde{\mathbf{w}})\right) d\tilde{\mathbf{w}}}, \text{ for all }$ $\mathbf{w} \in \mathcal{W}$

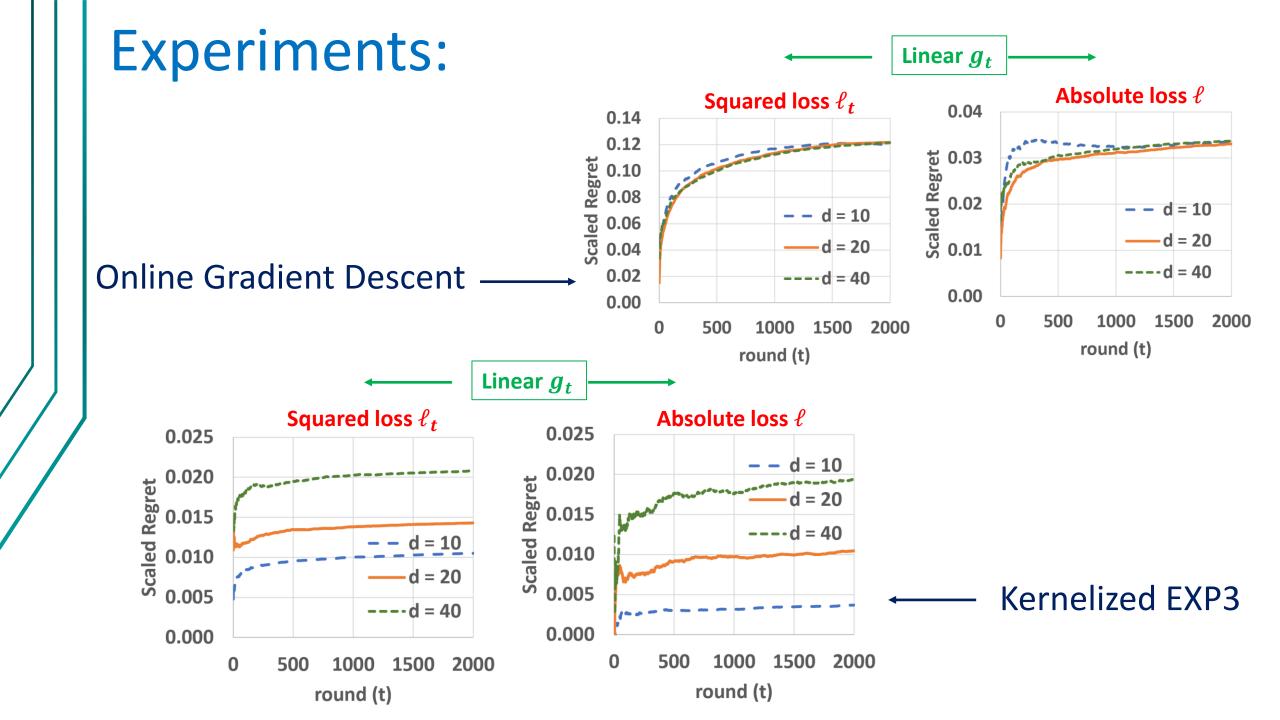
11: **end for**

Regret Guarantee:

For convex & Lipschitz ℓ_t , Regret = $O\left(\sqrt{dT}\right)$

Estimating $f_t(w) \forall w$

Exponential wt update



In a nutshell:

- Problem formulation: Pseudo 1d bandit convex optimization
- Proposed algorithms: Design optimal algorithms + Analysis
- Understand fundamental performance limit (regret lower bound)

Future Works:

- Understand the problem complexity for higher dimensional $\ell()$?
- Can we design an unified algorithm with regret $0 \left(min \left(\sqrt{dT}, T^{3/4} \right) \right)$?

Thanks!

Questions @ aasa@microsoft.com