Is Pessimism Provably Efficient for Offline RL?

Ying Jin ¹ Zhuoran Yang ² Zhaoran Wang ³

¹Stanford University

²Princeton University

³Northwestern University

Episodic MDP

- \blacktriangleright S: infinite state space. A: finite action space.
- Unknown reward function $r_h : S \times A \rightarrow [0, 1]$.
- Unknown transition kernel $\mathbb{P}_h(\cdot | x, a) \in \Delta(\mathcal{S})$.
- Finite horizon H: terminate when h = H.

Episodic MDP

- Policy: $\pi = {\pi_h}_{h \in [H]} : S \to \Delta(A), a_h \sim \pi_h(s_h).$
- Expected total reward: $J(\pi, x) = \mathbb{E}_{\pi}[\sum_{h=1}^{H} r_h | s_1 = x] \in [0, H].$
- Optimal policy: $\pi^*(\cdot) = \operatorname{argmax}_{\pi} J(\pi, \cdot).$

Offline Policy Learning Learn from Given Datasets

- Offline Data: collected a priori.
- Arbitrary trajectories: actions a_h by an offline agent (unknown rule).
- No further interactions with MDP.
- Learning objective: performance of the learned policy

$$\mathsf{SubOpt}(\widehat{\pi}, x) = J(\pi^{\star}, x) - J(\widehat{\pi}, x),$$

where $\widehat{\pi} = \text{OfflineRL}(\mathcal{D}, \mathcal{F})$, $x \in \mathcal{S}$.

Why May Greedy Value Iterations Fail? Epistemic Uncertainty

Some policy π̃ might be insufficiently covered by dataset D ⇒ Large uncertainty in our knowledge about a policy π̃.

Epistemic Uncertainty spuriously correlates with decision-making,

$$J(\widehat{\pi}) = J\left(\underset{\pi}{\operatorname{argmax}} \ \widehat{J}(\pi)\right).$$

 \widehat{J} might be far from J for some π .

• Ruined if a bad π with large uncertainty appears to be good!

• No further interactions with MDP \Rightarrow unable to reduce uncertainty.

Question

Is it possible to design a provably efficient algorithm for offline RL under minimal assumptions on the dataset?

• Our solution by **Pessimism**: penalize large epistemic uncertainties.

Pessimism for Offline Learning General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

• Estimate: $\overline{Q}_h \leftarrow \operatorname{Regress}(\mathbb{B}_h \widehat{Q}_{h+1}, \mathcal{D}, \mathcal{F}).$

Uncertainty quantification (UQ): w.h.p.

$$\left|\overline{Q}_{h} - (\mathbb{B}_{h}\widehat{Q}_{h+1})\right| \leq \Gamma_{h}, \quad \forall h \in [H].$$

Construct pessimistic value function

$$\widehat{Q}_{h}(x,a) = \underbrace{\overline{Q}_{h}(x,a)}_{\text{VI}} \underbrace{-\Gamma_{h}(x,a)}_{\text{penalty}}$$

• Optimize: $\widehat{\pi}_h(x) = \operatorname{argmax}_{a \in \mathcal{A}} \widehat{Q}_h(x, a).$

Why Pessimism Helps? Suboptimality Upper Bound ¹

A clean suboptimality bound

$$\mathsf{SubOpt}(\widehat{\pi}; x) \le 2\sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[\Gamma_h(s_h, a_h) \, \big| \, s_1 = x \right]$$

- Only depends on the trajectory of π^{\ast}
- Pessimism eliminates spurious correlation.

¹Adapted from Theorem 4.2 in (JYW'20)

Why Pessimism Helps? Suboptimality Upper Bound ¹

A clean suboptimality bound

$$\mathsf{SubOpt}(\widehat{\pi}; x) \le 2\sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[\Gamma_h(s_h, a_h) \, \big| \, s_1 = x \right]$$

- Only depends on the trajectory of π^{\ast}
- Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γ_h ?

¹Adapted from Theorem 4.2 in (JYW'20)

Instantiation of PEVI Linear MDP

Definition (Linear MDP)

We say an episodic MDP (S, A, H, \mathbb{P}, r) is a linear MDP with a known feature map $\phi : S \times A \to \mathbb{R}^d$ if there exist d unknown (signed) measures $\mu_h = (\mu_h^{(1)}, \dots, \mu_h^{(d)})$ over S and an unknown vector $\theta_h \in \mathbb{R}^d$ such that

$$\mathbb{P}_{h}(x' \mid x, a) = \langle \phi(x, a), \mu_{h}(x') \rangle,$$

$$\mathbb{E}[r_{h}(s_{h}, a_{h}) \mid s_{h} = x, a_{h} = a] = \langle \phi(x, a), \theta_{h} \rangle$$

for all $(x, a, x') \in S \times A \times S$ at each step $h \in [H]$. Here we assume $\|\phi(x, a)\| \leq 1$ for all $(x, a) \in S \times A$ and $\max\{\|\mu_h(S)\|, \|\theta_h\|\} \leq \sqrt{d}$ at each step $h \in [H]$, where $\|\mu_h(S)\| = \int_S \|\mu_h(x)\| \, dx$.

• Linearity of Bellman update: $\mathbb{B}_h \widehat{Q}_{h+1} = \phi^\top \widehat{\theta}_h$ for some $\widehat{\theta}_h \in \mathbb{R}^d$.

• Linear function approximation $\mathcal{F} = \{ f_{\theta}(x, a) = \phi(x, a)^{\top} \theta, \ \theta \in \mathbb{R}^d \}.$

Instantiation of PEVI Linear MDP

Algorithm: PEVI for Linear MDP

- Estimate: $\overline{Q}_h(x,a) = \phi(x,a)^\top \widehat{\theta}_h$ via ridge regression.
- Uncertainty quantification

$$\Gamma_h(x,a) \asymp dH \cdot \left(\phi(x,a)^\top \Lambda_h^{-1} \phi(x,a)\right)^{1/2},$$

where Λ_h is the augmented sample covariance matrix of $\phi(s_h, a_h)$. Pessimistic value function

$$\widehat{Q}_h(x,a) = \phi(x,a)^\top \widehat{\theta}_h - c \cdot dH \cdot \left(\phi(x,a)^\top \Lambda_h^{-1} \phi(x,a)\right)^{1/2}$$

• Optimize: $\widehat{\pi}_h(x) = \operatorname{argmax}_{a \in \mathcal{A}} \widehat{Q}_h(x, a).$

Instantiation of PEVI - Linear MDP

Compliance Assumption

Assumption: Compliance

Let $\mathbb{P}_{\mathcal{D}}$ be the joint distribution of the dataset $\mathcal{D} = \{(x_h^{\tau}, a_h^{\tau}, r_h^{\tau})\}_{\tau, h=1}^{K, H}$. We say \mathcal{D} is compliant with an MDP $(\mathcal{S}, \mathcal{A}, H, \mathbb{P}, r)$ if

$$\mathbb{P}_{\mathcal{D}}\left(r_{h}^{\tau} = r', x_{h+1}^{\tau} = x' \mid \{(x_{h}^{j}, a_{h}^{j})\}_{j=1}^{\tau}, \{(r_{h}^{j}, x_{h+1}^{j})\}_{j=1}^{\tau-1}\right)$$
$$= \mathbb{P}\left(r_{h} = r', s_{h+1} = x' \mid s_{h} = x_{h}^{\tau}, a_{h} = a_{h}^{\tau}\right)$$

for all $r' \in [0, 1]$, $x' \in S$, $h \in [H]$, $\tau \in [K]$. Here \mathbb{P} is taken with respect to the underlying MDP.

- Only require that \mathcal{D} evolves according to the MDP.
- Minimal assumptions on actions a^t_h: allow for arbitrarily collected data.
 - i.i.d. trajectories from a behavior policy \checkmark
 - sequentially adjusted actions $a_h^\tau \in \sigma(\{x_{h+1}^j, r_h^j\}_{j < \tau})$ 🗸

Instantiation of PEVI - Linear MDP Suboptimality Upper Bound

Theorem 4.4 (JYW'20)

If ${\mathcal D}$ is compliant with the underlying MDP, then w.h.p,

$$\mathsf{SubOpt}(\widehat{\pi}; x) \leq c \cdot dH \sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}} \left[\left(\phi(s_h, a_h)^{\top} \Lambda_h^{-1} \phi(s_h, a_h) \right)^{1/2} \middle| s_1 = x \right].$$

up to logarithm factors of d, H, K.

- ▶ Minimal-assumption guarantee: only require compliance of *D*.
- Oracle property: only depends on how well π* is covered no requirement on coverage of all trajectories.
- Data-dependent upper bound: (offline) data is what it is.

Question

Is coverage of optimal π^* the essential information in \mathcal{D} ?

Minimax Optimality of Pessimism: Linear MDP

• Answer: Coverage of optimal π^* is the essential information in \mathcal{D} .

Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality of Pessimism: Linear MDP

Answer: Coverage of optimal π* is the essential information in D.
Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

• Upper bound: pessimistic policy $\widehat{\pi}$ and compliant $\mathcal{D} \sim \mathcal{M}$,

$$\mathsf{SubOpt}\big(\mathcal{M}, \widehat{\pi}; x\big) \leq c \cdot dH \sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}} \Big[\big(\phi(s_h, a_h)^{\top} \Lambda_h^{-1} \phi(s_h, a_h)\big)^{1/2} \,\Big| \, s_1 = x \Big].$$

Minimax Optimality of Pessimism: Linear MDP

Answer: Coverage of optimal π* is the essential information in D.
Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

• Upper bound: pessimistic policy $\widehat{\pi}$ and compliant $\mathcal{D} \sim \mathcal{M}$,

$$\mathsf{SubOpt}(\mathcal{M}, \widehat{\pi}; x) \leq c \cdot dH \sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}} \Big[\big(\phi(s_h, a_h)^{\top} \Lambda_h^{-1} \phi(s_h, a_h) \big)^{1/2} \, \Big| \, s_1 = x \Big].$$

• Lower bound: for any offline learning algorithm $Algo(\cdot)$,

$$\sup_{\mathcal{M},\mathcal{D}} \mathbb{E}_{\mathcal{D}} \left[\frac{\mathsf{SubOpt}(\mathcal{M}, \mathsf{Algo}(\mathcal{D}); x)}{\sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}} \left[\left(\phi(s_{h}, a_{h})^{\top} \Lambda_{h}^{-1} \phi(s_{h}, a_{h}) \right)^{1/2} \middle| s_{1} = x \right]} \right] \geq c.$$

• Dependence on true MDP \mathcal{M} and its optimal policy π^* .

• Essential Hardness in \mathcal{D} : how well (sample covariance) Λ_h covers π^* .