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Episodic MDP

I S: infinite state space. A: finite action space.

I Unknown reward function rh : S ×A → [0, 1].

I Unknown transition kernel Ph(· |x, a) ∈ ∆(S).

I Finite horizon H: terminate when h = H.
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Episodic MDP

I Policy: π = {πh}h∈[H] : S → ∆(A), ah ∼ πh(sh).

I Expected total reward: J(π, x) = Eπ[
∑H
h=1 rh | s1 = x] ∈ [0, H].

I Optimal policy: π?(·) = argmaxπ J(π, ·).
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Offline Policy Learning
Learn from Given Datasets

I Offline Data: collected a priori.

I Arbitrary trajectories: actions ah by an offline agent (unknown rule).

I No further interactions with MDP.

I Learning objective: performance of the learned policy

SubOpt(π̂, x) = J(π?, x)− J(π̂, x),

where π̂ =OfflineRL(D,F), x ∈ S.
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Why May Greedy Value Iterations Fail?
Epistemic Uncertainty

I Some policy π̃ might be insufficiently covered by dataset D
⇒ Large uncertainty in our knowledge about a policy π̃.

I Epistemic Uncertainty spuriously correlates with decision-making,

J(π̂) = J
(
argmax

π
Ĵ(π)

)
.

Ĵ might be far from J for some π.

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.
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Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.
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Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

I Estimate: Qh ← Regress(BhQ̂h+1,D,F).

I Uncertainty quantification (UQ): w.h.p.∣∣Qh − (BhQ̂h+1)
∣∣ ≤ Γh, ∀h ∈ [H].

I Construct pessimistic value function

Q̂h(x, a) = Qh(x, a)︸ ︷︷ ︸
VI

−Γh(x, a)︸ ︷︷ ︸
penalty

I Optimize: π̂h(x) = argmaxa∈A Q̂h(x, a).
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Why Pessimism Helps?
Suboptimality Upper Bound 1

I A clean suboptimality bound

SubOpt(π̂;x) ≤ 2

H∑
h=1

Eπ∗
[
Γh(sh, ah)

∣∣ s1 = x
]

• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

1Adapted from Theorem 4.2 in (JYW’20)
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Instantiation of PEVI
Linear MDP

Definition (Linear MDP)

We say an episodic MDP (S,A, H,P, r) is a linear MDP with a known

feature map φ : S ×A → Rd if there exist d unknown (signed) measures

µh = (µ
(1)
h , . . . , µ

(d)
h ) over S and an unknown vector θh ∈ Rd such that

Ph(x′ |x, a) = 〈φ(x, a), µh(x′)〉,
E
[
rh(sh, ah)

∣∣ sh = x, ah = a
]

= 〈φ(x, a), θh〉

for all (x, a, x′) ∈ S ×A× S at each step h ∈ [H]. Here we assume

‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S ×A and max{‖µh(S)‖, ‖θh‖} ≤
√
d at

each step h ∈ [H], where ‖µh(S)‖ =
∫
S ‖µh(x)‖ dx.

I Linearity of Bellman update: BhQ̂h+1 = φ>θ̂h for some θ̂h ∈ Rd.

I Linear function approximation F = {fθ(x, a) = φ(x, a)>θ, θ ∈ Rd}.
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Instantiation of PEVI
Linear MDP

Algorithm: PEVI for Linear MDP

I Estimate: Qh(x, a) = φ(x, a)>θ̂h via ridge regression.

I Uncertainty quantification

Γh(x, a) � dH ·
(
φ(x, a)>Λ−1h φ(x, a)

)1/2
,

where Λh is the augmented sample covariance matrix of φ(sh, ah).

I Pessimistic value function

Q̂h(x, a) = φ(x, a)>θ̂h − c · dH ·
(
φ(x, a)>Λ−1h φ(x, a)

)1/2
I Optimize: π̂h(x) = argmaxa∈A Q̂h(x, a).
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Instantiation of PEVI - Linear MDP
Compliance Assumption

Assumption: Compliance

Let PD be the joint distribution of the dataset D = {(xτh, aτh, rτh)}K,Hτ,h=1.

We say D is compliant with an MDP (S,A, H,P, r) if

PD
(
rτh = r′, xτh+1 = x′

∣∣ {(xjh, ajh)}τj=1, {(r
j
h, x

j
h+1)}τ−1j=1

)
= P

(
rh = r′, sh+1 = x′

∣∣ sh = xτh, ah = aτh
)

for all r′ ∈ [0, 1], x′ ∈ S, h ∈ [H], τ ∈ [K]. Here P is taken with

respect to the underlying MDP.

I Only require that D evolves according to the MDP.

I Minimal assumptions on actions aτh: allow for arbitrarily collected

data.
• i.i.d. trajectories from a behavior policy X
• sequentially adjusted actions aτh ∈ σ({xjh+1, r

j
h}j<τ ) X
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW’20)

If D is compliant with the underlying MDP, then w.h.p,

SubOpt
(
π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

up to logarithm factors of d,H,K.

I Minimal-assumption guarantee: only require compliance of D.

I Oracle property: only depends on how well π? is covered - no requirement on

coverage of all trajectories.

I Data-dependent upper bound: (offline) data is what it is.
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Question

Is coverage of optimal π? the essential information in D?
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Minimax Optimality of Pessimism: Linear MDP

I Answer: Coverage of optimal π? is the essential information in D.

I Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

I Lower bound: for any offline learning algorithm Algo(·),

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

• Dependence on true MDP M and its optimal policy π?.
• Essential Hardness in D: how well (sample covariance) Λh covers π?.
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