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Episodic MDP
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» S: infinite state space. A: finite action space.
» Unknown reward function rp, : S x A — [0, 1].
» Unknown transition kernel P, (- |z, a) € A(S).

» Finite horizon H: terminate when h = H.
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Episodic MDP
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[E[rl + np + (g 4+t rH]=J(7[)

» Policy: m = {mn}theim: S — A(A), an ~ mh(sh).
> Expected total reward: J(m,z) = ]EW[Zthl ry|s1 =z € [0, H].

» Optimal policy: 7*(-) = argmax_ J(m, ).
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Offline Policy Learning
Learn from Given Datasets

Offline Agent
-
" -~ N
9: arbitrary trajectories .
Data & v s
arbitrary action"
Collected a priori Lt
- e -
Environment

» Offline Data: collected a priori.
> Arbitrary trajectories: actions aj by an offline agent (unknown rule).
» No further interactions with MDP.

» Learning objective: performance of the learned policy

SubOpt(7,2) = J(n*, ) — J(7, x)

3

where T =OfflineRL(D, F), z € S.
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Why May Greedy Value lterations Fail?
Epistemic Uncertainty

» Some policy ™ might be insufficiently covered by dataset D
= Large uncertainty in our knowledge about a policy 7.

» Epistemic Uncertainty spuriously correlates with decision-making,

J(7) = J(argmax j(ﬂ))

J might be far from .J for some 7.

» Ruined if a bad 7 with large uncertainty appears to be good!

» No further interactions with MDP =- unable to reduce uncertainty.
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Question

Is it possible to design a provably efficient algorithm for
offline RL under minimal assumptions on the dataset?

» Our solution by Pessimism: penalize large epistemic uncertainties.
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Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

» Estimate: Q) « Regress(Bh@hH,D,}').

» Uncertainty quantification (UQ): w.h.p.
1@ — (Bh@h+1)| <Tw, VhelH].

» Construct pessimistic value function

~

Qh,(xa a’) - @h(xa CL) 71—‘}7,('753 a)
——— —— —
VI penalty

» Optimize: 7y (z) = argmax,¢ 4 @h(x,a).
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Why Pessimism Helps?
Suboptimality Upper Bound !

» A clean suboptimality bound

H
SubOpt(7; z) < 2 ZEW* [Ch(sn,an) |51 = 2]
h=1

® Only depends on the trajectory of 7*
® Pessimism eliminates spurious correlation.

!Adapted from Theorem 4.2 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound !

» A clean suboptimality bound

H
SubOpt(7;2) <2 B [Th(sn, an) | 51 = 2]
h=1

® Only depends on the trajectory of 7*
® Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier I';,7

'Adapted from Theorem 4.2 in (JYW'20)
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Instantiation of PEVI
Linear MDP

Definition (Linear MDP)

We say an episodic MDP (S, A, H,IP,r) is a linear MDP with a known
feature map ¢ : S x A — RY if there exist d unknown (signed) measures

= (MS), . ,,ufld)) over S and an unknown vector 6;, € R? such that

Ph(z/ |‘Ta a) = <¢(I’ a),uh(x'»,

E[rh(sh,an) | sn = @, an = a] = (¢(z,a),0p)

for all (z,a,2') € S x A x S at each step h € [H]. Here we assume
|p(z,a)|| <1 for all (z,a) € S x A and max{||ux(S)||, |6x]]} < Vd at
each step h € [H], where [|pn(S)|| = [s |lpn ()] da.

> Linearity of Bellman update: B, Q.1 = ¢ ' 0, for some 6, € R%.
» Linear function approximation F = {fg(x,a) = ¢(z,a) 0, § € R4}.
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Instantiation of PEVI
Linear MDP

Algorithm: PEVI for Linear MDP

» Estimate: Q,(7,a) = ¢(x,a) ' 0y, via ridge regression.
» Uncertainty quantification

1/2

Typ(z,a) < dH - (ng(x,a)TA,:lqﬁ(x,a)) ,

where Ay, is the augmented sample covariance matrix of ¢(sp, ap).

» Pessimistic value function

-~

Qn(z,a) = ¢(x, a)Té\h —c-dH - (qS(z,a)TAglgb(x, a))1/2

» Optimize: 7y (z) = argmax, ¢ 4 @h(x,a).
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Instantiation of PEVI - Linear MDP

Compliance Assumption

Assumption: Compliance

Let Pp be the joint distribution of the dataset D = {(z7,aj}, T}C)}fh}il

We say D is compliant with an MDP (S, A, H, P, r) if

]P)D(Tg = T/a‘r;;-i-l = xl | {(l’i, ai)};:h {(Tiu ‘riz-i-l) ;;11)
P

= (Th = 7"I,Sh-s-l = \ Sp = Xp,ap = a;)

for all v/ € [0,1], ' € S, h € [H], T € [K]. Here P is taken with
respect to the underlying MDP.

» Only require that D evolves according to the MDP.

» Minimal assumptions on actions aj: allow for arbitrarily collected
data.

® j.i.d. trajectories from a behavior policy v/
® sequentially adjusted actions a] € o({z]_,,7}j<r) v
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW'20)
If D is compliant with the underlying MDP, then w.h.p,

H
SubOpt(ﬁ; x) <c-dH Z E [((j)(sh, ah)TA;1¢(sh, ah))l/Q ‘ s1 = m]
h=1
up to logarithm factors of d, H, K.
Minimal-assumption guarantee: only require compliance of D.
> Oracle property: only depends on how well 7* is covered - no requirement on

coverage of all trajectories.

> Data-dependent upper bound: (offline) data is what it is.
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Question

Is coverage of optimal 7* the essential information in D?
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Minimax Optimality of Pessimism: Linear MDP

*

» Answer: Coverage of optimal 7* is the essential information in D.

» Pessimism is (nearly) minimax optimal in linear setting.
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Minimax Optimality of Pessimism: Linear MDP

» Answer: Coverage of optimal 7* is the essential information in D.
» Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

» Upper bound: pessimistic policy 7 and compliant D ~ M,

H
SubOpt (M, 7;2) < c-dH Y B [((ﬁ(sh,ah)TA;ld)(sh, ah))1/2 ‘ o1 = az]
h=1
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Minimax Optimality of Pessimism: Linear MDP

» Answer: Coverage of optimal 7* is the essential information in D.
> Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

» Upper bound: pessimistic policy 7 and compliant D ~ M,

H
SubOpt(M,%; :Jc) <c-dH Z E [(‘b(sh,ah)TA;1¢>(Sh’ah))1/2 ‘ 51 = :1:]
h=1

» Lower bound: for any offline learning algorithm Algo(-),

E SubOpt (M, Algo(D); x) -
/?/]1117)3 v SH R [(¢(9 TA Lé(s 1/2 _ =<
D h=1 &m* < h?a’h) h ¢(5h7 a’h)) 51 =2

® Dependence on true MDP M and its optimal policy 7*.
® Essential Hardness in D: how well (sample covariance) A;, covers 7*.
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