

Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation

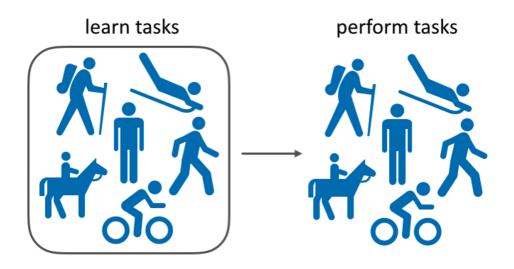
Haoxiang Wang
PhD Candidate
ECE, UIUC

Han Zhao
Assistant Professor
Computer Science, UIUC

Bo LiAssistant Professor
Computer Science, UIUC

Multi-Task Learning vs. Meta-Learning: Settings and Goals

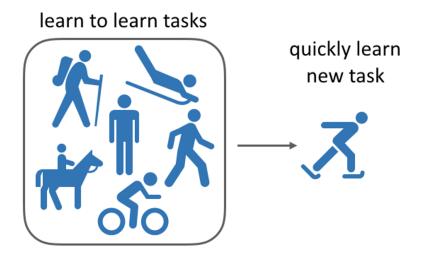
Multi-Task Learning (MTL)



Setting: Test task = Training tasks

Goal: Be a master on a set of tasks

Meta-Learning



Setting: Test task ∉ Training tasks

Goal: Adapt to an unseen task quickly.

Assumption: The test task has some shared

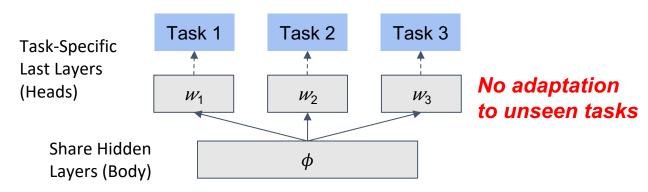
knowledge (i.e., meta-knowledge) with the

training tasks.

Multi-Task Learning (MTL) vs. Gradient-Based Meta-Learning (GBML)

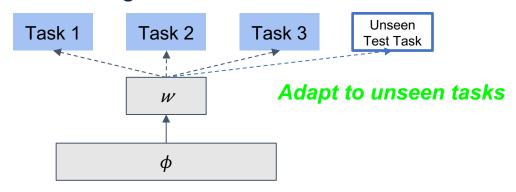
Multi-Task Learning (MTL)

Multi-Head Structure



Gradient-Based Meta-Learning (GBML)

Single-Head Structure



Training Objective:

<u>1st-order</u> optimization (a form of Empirical Risk Minimization)

→ Efficient Training

Training Objective:

<u>2nd order</u> optimization (e.g., MAML, MetaOptNet, ANIL, iMAML)

→ Expensive Training

Motivation and Contribution

Motivation:

Can we combine the best of both worlds from multi-task learning and meta-learning, i.e., effective adaptation to unseen tasks with efficient training?

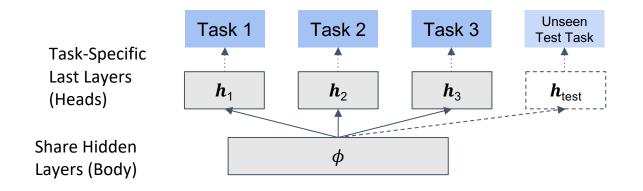
Our answer: Yes!

Contribution:

Our paper bridges *Multi-Task Learning* (MTL) and *Gradient-Based Meta-Learning* (GBML) by theoretical and empirical studies.

Multi-Task Learning for Unseen Tasks by Fine-Tuning Last Layer

Multi-Head Structure

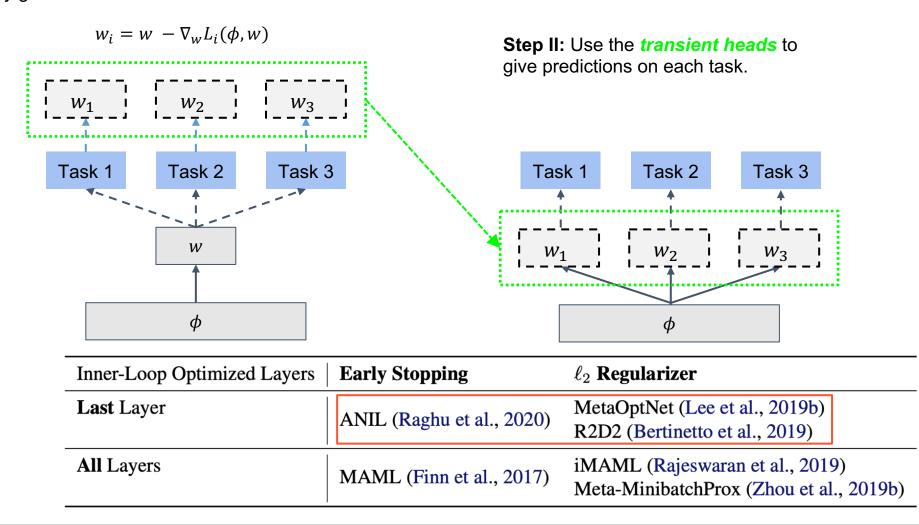


Fine-tuning: For a trained MTL model, we can adapt it to an unseen test task by

- 1. Randomly initialize a new head
- 2. Fine-tune the head on a few labelled data of the test task
- 3. Use the fine-tuned head for predictions on the new task

Gradient-Based Meta-Learning: Similarity to Multi-Task Learning

Step I: Obtain task-specific *transient heads* by gradient descent on each task



Theoretical Results

Inner-Loop Optimized Layer	rs Early Stopping	ℓ_2 Regularizer
Last Layer	ANIL (Raghu et al., 2020)	MetaOptNet (Lee et al., 2019b) R2D2 (Bertinetto et al., 2019)
All Layers	MAML (Finn et al., 2017)	iMAML (Rajeswaran et al., 2019) Meta-MinibatchProx (Zhou et al., 2019b)

Equivalence: MTL and a class of GBML shares the same optimization objective

Difference: MTL uses joint training, while GBML adopts bi-level optimization with regularization

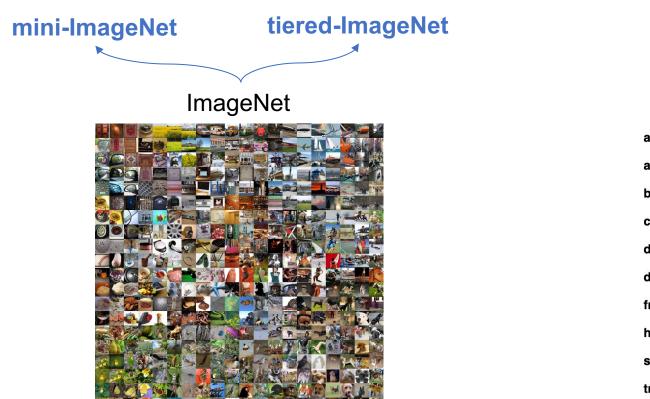
Closeness in the function space:

- ➤ We compare neural nets trained by ANIL (a MAML simplification) and MTL in an NTK-based metalearning framework [1]
- > We prove that, on any test task, the difference between predictions is upper bounded as

$$\|\text{ANIL prediction} - \text{MTL prediction}\|_2 \leq \mathcal{O}(\lambda \tau + \frac{1}{L})$$
 L: Network depth λ, τ : Learning rates

Experiments on Few-Shot Learning

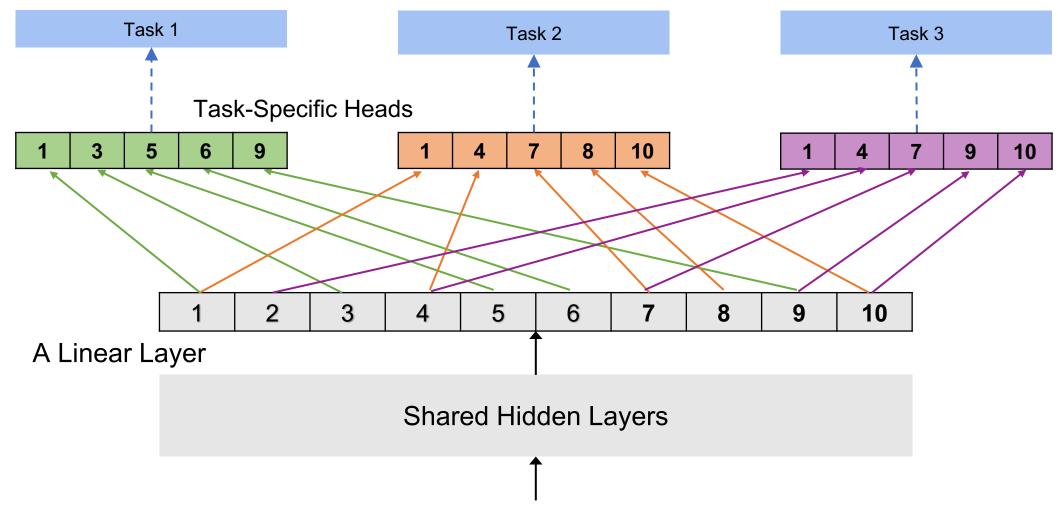
Benchmarks: 4 popular few-shot learning datasets, extracted from ImageNet and CIFAR-100.



Remarks: The number of unique training tasks is quite large (due to combinatorial explosion), e.g., it's 4.3 billions for tiered-ImageNet. Thus, we cannot afford an individual head for each training task.

Memory-Efficiency Implementation of MTL Heads

Example: 5-way few-shot classification; Each task has 5 task-specific classes drawn from 10 base classes.



Experimental Results on Few-Shot Learning

MetaOptNet: A state-of-the-art gradient-based meta-learning algorithm.

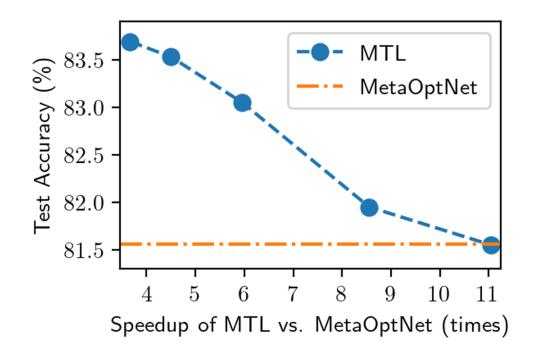
MTL-ours: Our memory-efficient implementation of multi-task learning.

		mini-In	nageNet	tiered-In	nageNet	CIFA	R-FS	FC	100
Algorithm	Architecture	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)
MAML [Finn et al., 2017a]	CNN-4	48.70 ± 1.84	63.11 ± 0.92						
MetaOptNet [Lee et al., 2019]	ResNet-12	$\textbf{62.64} \pm \textbf{0.61}$	$\textbf{78.63} \pm \textbf{0.46}$	65.99 ± 0.72	81.56 ± 0.53	$\textbf{72.0} \pm \textbf{0.7}$	$\textbf{84.2} \pm \textbf{0.5}$	41.1 ± 0.6	55.5 ± 0.6
MTL-ours [Wang et al., 2021]	ResNet-12	59.84 ± 0.22	$\textbf{77.72} \pm \textbf{0.09}$	$\textbf{67.11} \pm \textbf{0.12}$	83.69 ± 0.02	69.5 ± 0.3	$\textbf{84.1} \pm \textbf{0.1}$	$\textbf{42.4} \pm \textbf{0.2}$	$\textbf{57.7} \pm \textbf{0.3}$

Multi-task learning can match the SOTA of gradient-based meta-learning on few-shot learning benchmarks!

Training Efficiency of Multi-Task Learning vs. Gradient-Based Meta-Learning

	Test Accuracy	GPU Hours
MetaOptNet	78.63%	85.6 hrs
MTL	77.72%	3.7 hrs



Mini-ImageNet (5-way 5 shot)

tiered-ImageNet (5-way 5 shot)

Multi-task learning can be more than 10x faster, since it does not use any 2nd order optimization.

Thank you for watching this presentation!

Takeaway: We can combine the benefits of multi-task learning and meta-learning, i.e., effective adaptation to unseen tasks with efficient training.

Code: https://github.com/Al-secure/multi-task-learning

Contact Information:

- Haoxiang Wang: hwang264@illinois.edu
- Han Zhao: hanzhao@illinois.edu
- Bo Li: Ibo@illinois.edu