Understanding self-supervised Learning Dynamics without Contrastive Pairs

facebook Artificial Intelligence

Xinlei Chen¹

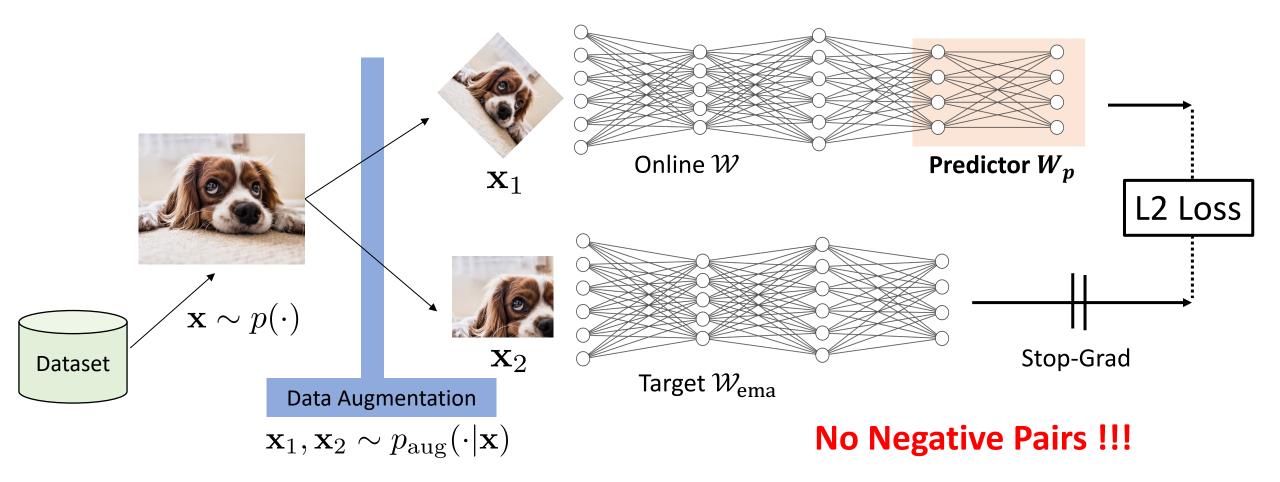
Surya Ganguli^{1,2}

¹ Facebook AI Research ² Stanford University

ICML 2021

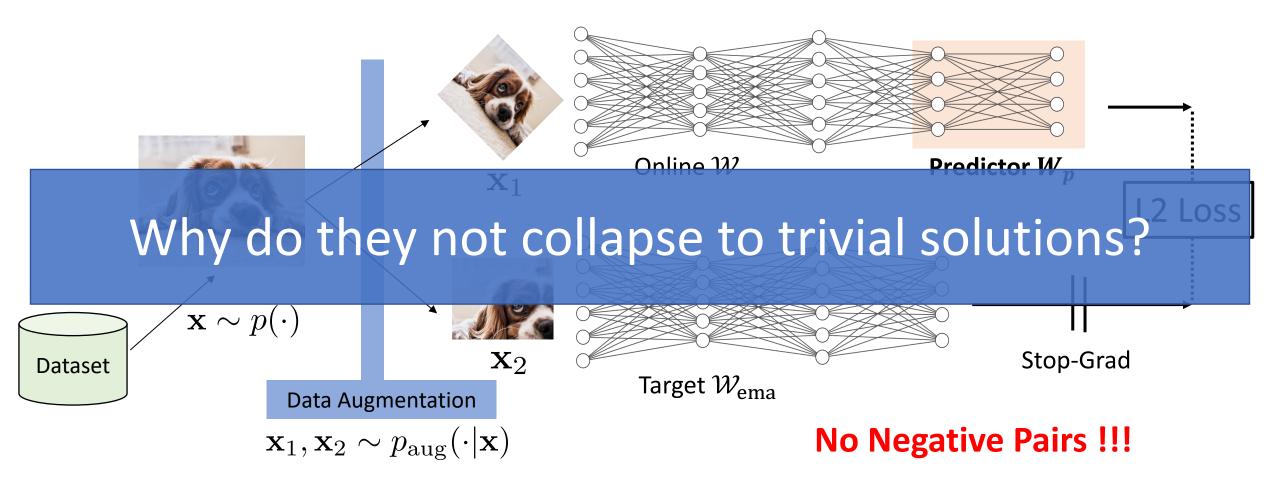
Code: <u>https://github.com/facebookresearch/luckmatters/tree/master/ssl</u>

Non-contrastive SSL (BYOL/SimSiam)



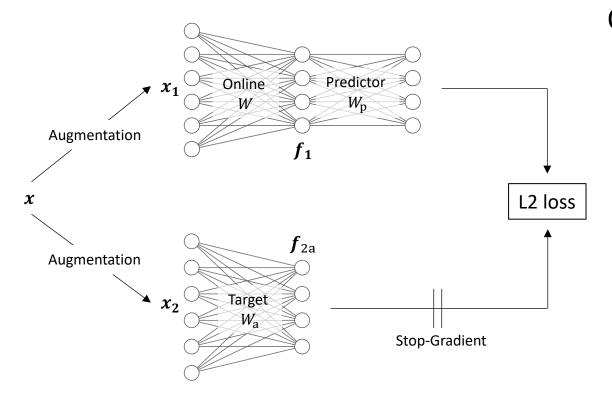
BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

Non-contrastive SSL (BYOL/SimSiam)?



BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

A simple model



Objective:

$$J(W, W_p) := rac{1}{2} \mathbb{E}_{oldsymbol{x}_1, oldsymbol{x}_2} \left[\|W_p oldsymbol{f}_1 - \operatorname{StopGrad}(oldsymbol{f}_{2\mathrm{a}})\|_2^2
ight]$$

Linear online network W

Linear target network W_a

Linear predictor W_p

The Dynamics of Training Procedure

Lemma 1. BYOL learning dynamics following Eqn. 1:

$$\begin{split} \dot{W}_p &= \alpha_p \left(-W_p W(X + X') + W_a X \right) W^{\intercal} - \eta W_p \\ \dot{W} &= W_p^{\intercal} \left(-W_p W(X + X') + W_a X \right) - \eta W \\ \dot{W}_a &= \beta (-W_a + W) \end{split}$$

$$\begin{split} \bar{\boldsymbol{x}}(\boldsymbol{x}) &:= \mathbb{E}_{\boldsymbol{x}' \sim p_{\text{aug}}(\cdot | \boldsymbol{x})} \left[\boldsymbol{x}' \right] \\ X &= \mathbb{E} \left[\bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^{\mathsf{T}} \right] \quad \text{Covariance of the data} \\ X' &= \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{V}_{\boldsymbol{x}' | \boldsymbol{x}} [\boldsymbol{x}'] \right] \quad \text{Covariance of the augmentation} \end{split}$$

Part I Why we need (1) an extra predictor and (2) stop-gradient?

Part II Why the system doesn't collapse to trivial solutions?

Part III The role played by different hyperparameters

Hyperparameter	Description
$lpha_p$	Relative learning rate of the predictor
η	Weight decay
β	The rate of Exponential Moving Average (EMA)

Part IV Novel non-contrastive SSL algorithm DirectPred

Part I No Predictor / No Stop-Gradient do not work

If there is no EMA ($W = W_a$), then the dynamics changes:

No Predictor

$$\dot{W} = -\underbrace{(X' + \eta I)W}_{\text{PSD matrix}}$$

No Stop-Gradient (Here
$$\widetilde{W_p} \coloneqq W_p - I$$
)

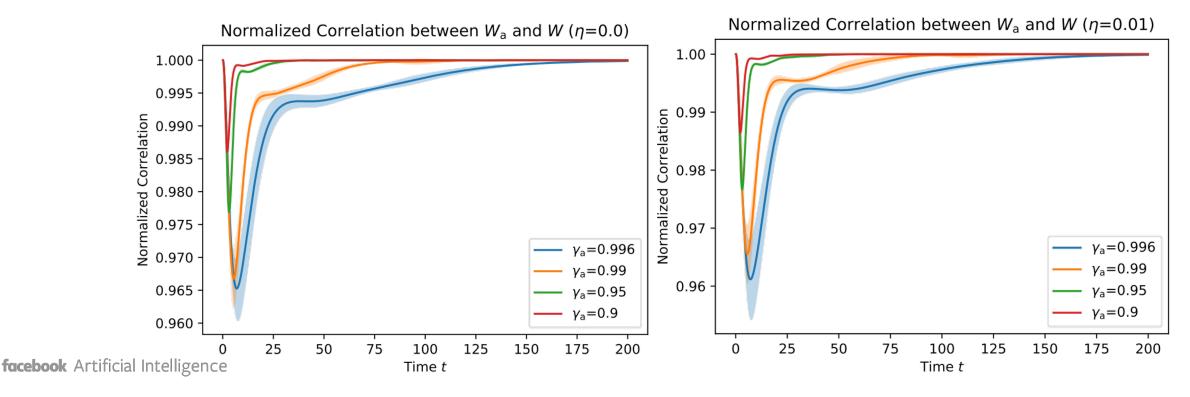
$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{vec}(W) = -\left[X' \otimes (W_p^{\mathsf{T}} W_p + I) + X \otimes \widetilde{W}_p^{\mathsf{T}} \widetilde{W}_p + \eta I_{n_1 n_2}\right] \operatorname{vec}(W)$$
PSD matrix

In both cases, $W \rightarrow 0$

Part II Assumptions

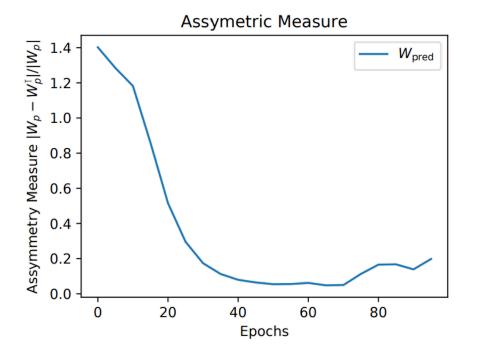
<u>Assumption 1</u> (Isotropic Data and Augmentation): X = I and $X' = \sigma^2 I$

<u>Assumption 2</u>: the EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function of W(t)

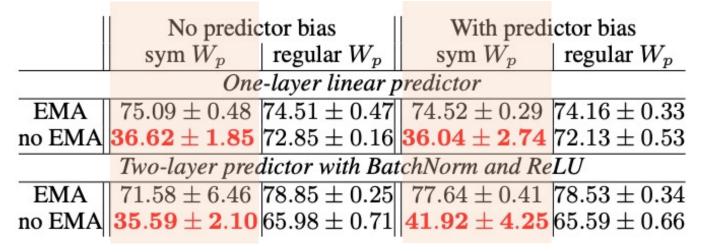


Symmetrization of the dynamics

<u>Assumption 3</u> (Symmetric predictor W_p): $W_p(t) = W_p^T(t)$



 W_p becomes increasingly symmetric over training



Perfect symmetric W_p might hurt training

Under the three assumptions, the dynamics becomes:

$$\begin{split} \dot{W}_p &= -\frac{\alpha_p}{2}(1+\sigma^2)\{W_p,F\} + \alpha_p\tau F - \eta W_p \\ \dot{F} &= -(1+\sigma^2)\{W_p^2,F\} + \tau\{W_p,F\} - 2\eta F \\ &\{A,B\} \coloneqq AB + BA \text{ is the anti-commutator.} \end{split}$$

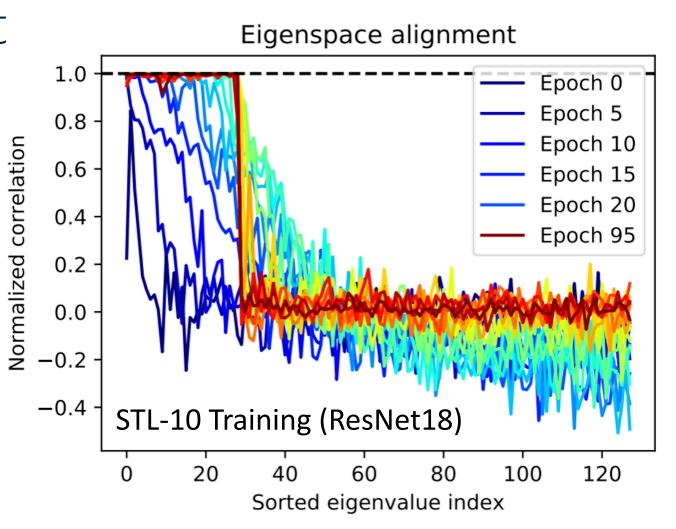
Here $F \coloneqq E[ff^T] = WXW^T$ is the correlation matrix of the input of the predictor W_p . F is well-defined even with nonlinear network.

Eigenspace Alignment

<u>Theorem 3</u>: Under certain conditions,

$$FW_p - W_p F \to 0$$

and the eigenspace of W_p and F gradually **aligns**.

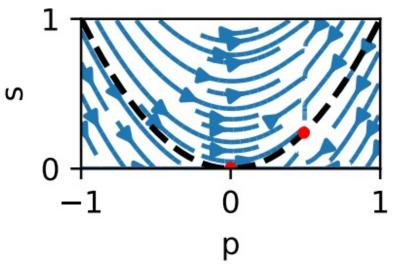


When eigenspace aligns, the dynamics becomes decoupled:

$$\dot{p}_j = \alpha_p s_j \left[\tau - (1 + \sigma^2) p_j \right] - \eta p_j$$

$$\dot{s}_j = 2p_j s_j \left[\tau - (1 + \sigma^2) p_j \right] - 2\eta s_j$$

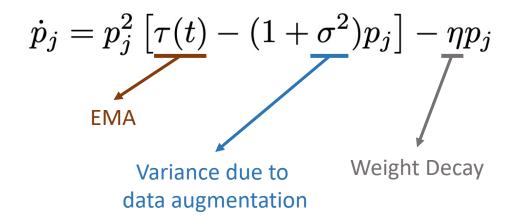
$$s_j \dot{\tau} = \beta (1 - \tau) s_j - \tau \dot{s}_j / 2.$$

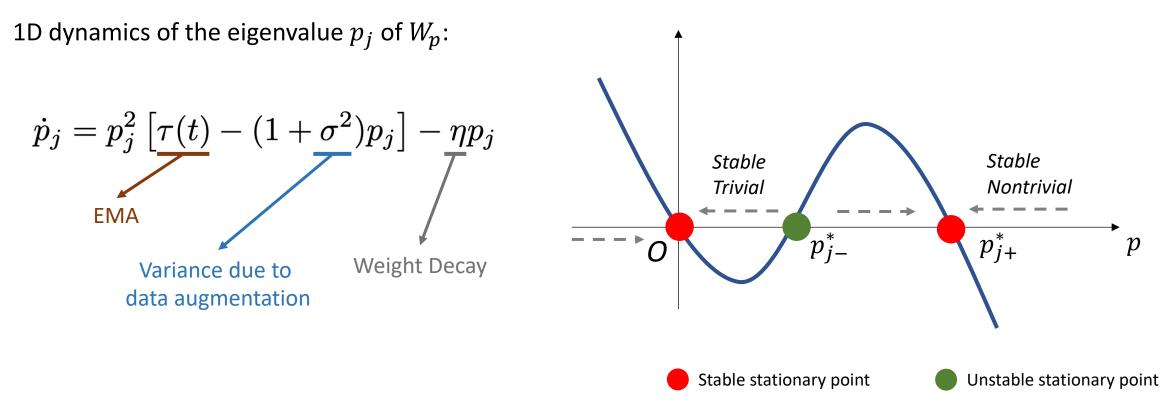


Where p_i and s_j are eigenvalues of W_p and F

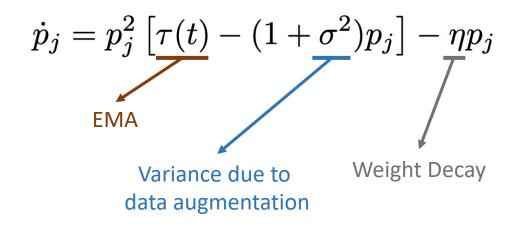
Invariance holds:
$$s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$$

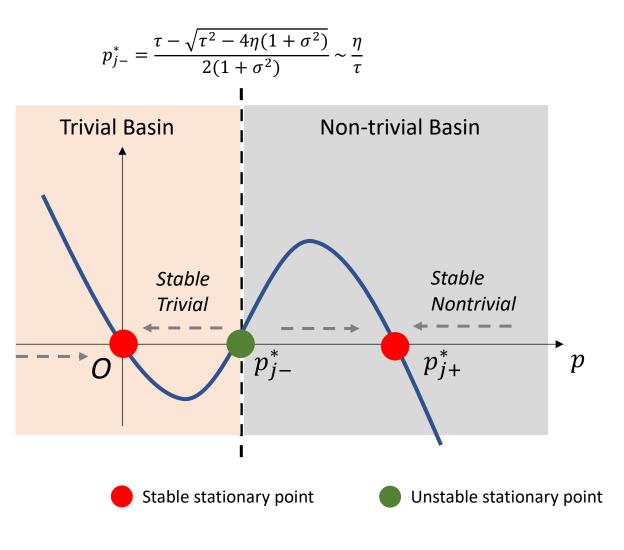
1D dynamics of the eigenvalue p_i of W_p :



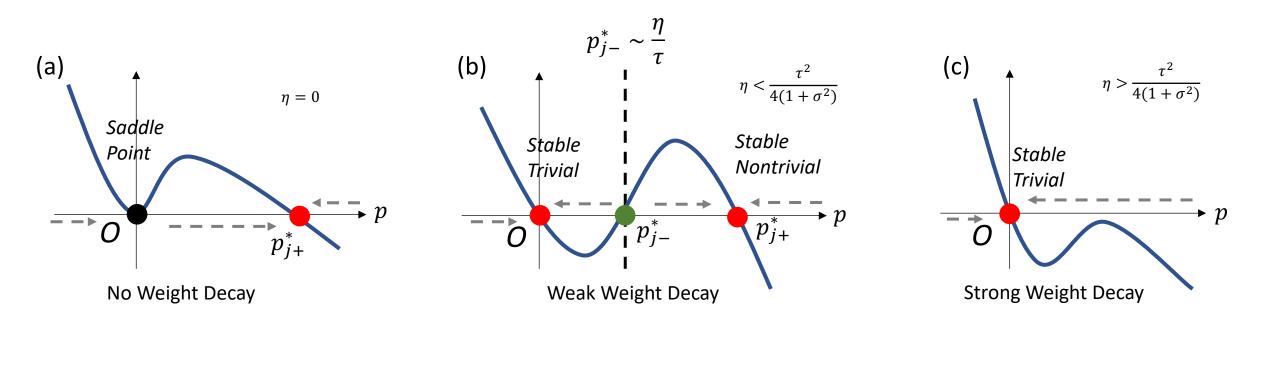


1D dynamics of the eigenvalue p_j of W_p :





<u>Part III</u> The Effect of Weight Decay η



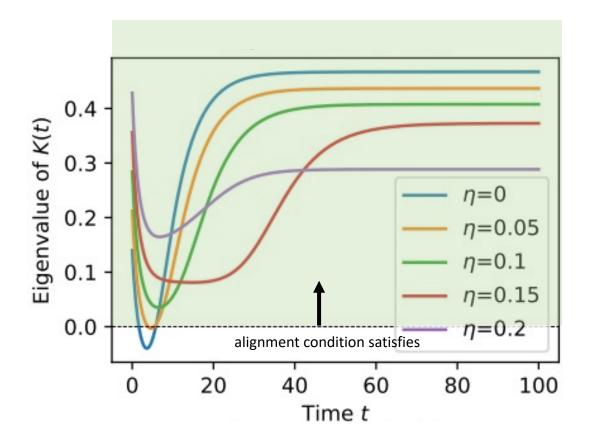
Stable stationary point

Unstable stationary point

The Benefit of Weight Decay

Eigenspace alignment condition

$$p_j [\tau - (1 + \sigma^2) p_j] < \frac{1}{2} [\alpha_p (1 + \sigma^2) s_j + 3\eta]$$

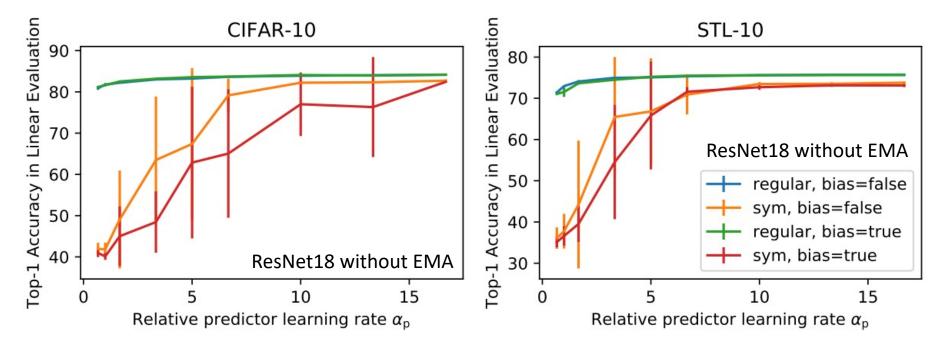


Higher weight decay \rightarrow alignment condition is more likely to satisfy!

Relative learning rate of the predictor $lpha_p$

Positive ©

- 1. Large α_p shrinks the size of trivial basin
- 2. Relax the condition of eigenspace alignment



facebook Artificial Intelligence

Negative \mathfrak{S} With very large α_p , eigenvalue of F won't grow (and no feature learning)

Exponential Moving Average rate eta

 β large $\rightarrow W_a(t)$ catches W(t) faster $\rightarrow \tau$ grows faster to 1

Positive O: Slower rate (small β) relaxes the condition of eigenspace alignment

Negative $\ensuremath{\mathfrak{S}}$: Slower rate makes the training slow and expands the size of trivial basin

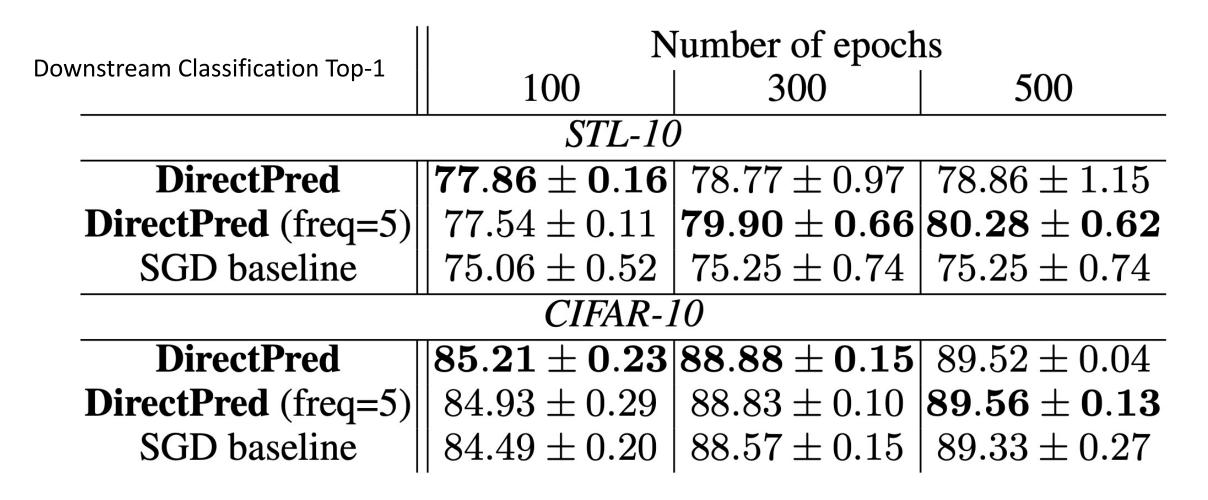
Part IV DirectPred

- Directly setting linear W_p rather than relying on gradient update.
 - 1. Estimate $\hat{F} = \rho \hat{F} + (1 \rho) E[\boldsymbol{f} \boldsymbol{f}^T]$
 - 2. Eigen-decompose $\widehat{F} = \widehat{U}\Lambda_F \widehat{U}^T$, $\Lambda_F = \text{diag}[s_1, s_2, \dots, s_d]$
 - 3. Set W_p following the invariance:

$$p_j = \sqrt{s_j} + \epsilon \max_j s_j, \ W_p = \hat{U} \operatorname{diag}[p_j] \hat{U}^{\mathsf{T}}$$

Guaranteed Eigenspace Alignment

Performance of DirectPred on STL-10/CIFAR-10



Performance of **DirectPred** on ImageNet

Downstream classification (ImageNet):

BYOL variants	Accuracy (60 ep)		Accuracy (300 ep)	
	Top-1	Top-5	Top-1	Top-5
2-layer predictor [*]	64.7	85.8	72.5	90.8
linear predictor	59.4	82.3	69.9	89.6
DirectPred	64.4	85.8	72.4	91.0

* 2-layer predictor is BYOL default setting.

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Conclusion

- A systematic analysis on the dynamics of non-contrastive selfsupervised learning (SSL) methods
 - **Part I** Why we need (1) an **extra predictor** and (2) **stop-gradient**?
 - **Part II** Why training doesn't **collapse** to trivial solutions?
 - **Part III** The role played by different hyperparameters
- Propose **DirectPred**, a novel non-contrastive SSL method
 - Directly align the eigenspace of the predictor W_p with the correlation matrix F
 - Comparable performance in downstream classification tasks, compared to vanilla BYOL
 - CIFAR-10/STL-10
 - ImageNet (60 epochs / 300 epochs)

facebook Artificial Intelligence

Code: https://github.com/facebookresearch/luckmatters/tree/master/ssl

