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Non-contrastive SSL (BYOL/SimSiam)

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020]
SimSiam: [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]
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Non-contrastive SSL (BYOL/SimSiam)?

Data Augmentation Target 𝒲!"#

Online𝒲 Predictor𝑾𝒑

L2 Loss

Dataset

No Negative Pairs !!!

Stop-Grad

Why do they not collapse to trivial solutions?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020]
SimSiam: [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]



A simple model

Linear online network 𝑊

Linear target network 𝑊%

Linear predictor 𝑊&

Objective:
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The Dynamics of Training Procedure

Hyperparameter Description

𝛼! Relative learning rate of the predictor

𝜂 Weight decay

𝛽 The rate of Exponential Moving Average (EMA)

Part I Why we need (1) an extra predictor 
and (2) stop-gradient?

Part II Why the system doesn’t collapse to 
trivial solutions?

Part III The role played by different hyperparameters 

Part IV Novel non-contrastive SSL algorithm DirectPred

Covariance of the data

Covariance of the augmentation



Part I No Predictor / No Stop-Gradient do not work

No Stop-Gradient (Here '𝑊& ≔𝑊& − 𝐼) 

PSD matrix

If there is no EMA (𝑊 = 𝑊+), then the dynamics changes:

No Predictor

PSD matrix

In both cases, 𝑊 → 0



Part II Assumptions

Assumption 2: the EMA weight 𝑊+ 𝑡 = 𝜏 𝑡 𝑊(𝑡) is a linear function of 𝑊(𝑡)

Assumption 1 (Isotropic Data and Augmentation): 𝑋 = 𝐼 and 𝑋′ = 𝜎,𝐼



Symmetrization of the dynamics

𝑊! becomes increasingly symmetric over training

Assumption 3 (Symmetric predictor 𝑊-): 𝑊-(𝑡) = 𝑊-.(𝑡)

Perfect symmetric 𝑊! might hurt training



Symmetrized Dynamics

Here 𝐹 ≔ E 𝑓𝑓. = 𝑊𝑋𝑊. is the correlation matrix of the input 
of the predictor 𝑊-. 𝐹 is well-defined even with nonlinear network.

𝐴, 𝐵 ≔ 𝐴𝐵 + 𝐵𝐴 is the anti-commutator.

Under the three assumptions, the dynamics becomes:



Eigenspace Alignment

Theorem 3: Under certain conditions,

𝐹𝑊% −𝑊%𝐹 → 0

and the eigenspace of 𝑊% and 𝐹
gradually aligns.   

STL-10 Training (ResNet18)



Why non-contrastive SSL doesn’t collapse?

When eigenspace aligns, the dynamics becomes decoupled:

Where 𝑝' and 𝑠' are eigenvalues of 𝑊& and 𝐹

Invariance holds:



Why non-contrastive SSL doesn’t collapse?

1D dynamics of the eigenvalue 𝑝' of 𝑊&:

EMA

Variance due to 
data augmentation

Weight Decay
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Why non-contrastive SSL doesn’t collapse?
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Part III The Effect of Weight Decay 𝜂
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The Benefit of Weight Decay

Eigenspace alignment condition

Higher weight decay à alignment condition is more likely to satisfy!

𝑝' 𝜏 − 1 + 𝜎+ 𝑝' <
1
2
[𝛼& 1 + 𝜎+ 𝑠' + 3𝜂]

alignment condition satisfies



Relative learning rate of the predictor 𝛼!
Positive J
1. Large 𝛼- shrinks the size of trivial basin 
2. Relax the condition of eigenspace alignment

Negative L With very large 𝛼&, eigenvalue of 𝐹 won’t grow (and no feature learning)

ResNet18 without EMA

ResNet18 without EMA



Exponential Moving Average rate 𝛽

Positive J: Slower rate (small 𝛽) relaxes the condition of 
eigenspace alignment

𝛽 large à𝑊+(𝑡) catches 𝑊(𝑡) faster à 𝜏 grows faster to 1

Negative L: Slower rate makes the training slow and expands 
the size of trivial basin



Part IV DirectPred

• Directly setting linear 𝑊- rather than relying on gradient update.

1. Estimate 4𝐹 = 𝜌 4𝐹 + 1 − 𝜌 𝐸[𝒇𝒇.]
2. Eigen-decompose 4𝐹 = =𝑈Λ= =𝑈., Λ= = diag [𝑠>, 𝑠,, … , 𝑠?]
3. Set 𝑊- following the invariance:

Guaranteed Eigenspace Alignment J



Performance of DirectPred on STL-10/CIFAR-10

Downstream Classification Top-1



Performance of DirectPred on ImageNet

Downstream classification (ImageNet):

DirectPred using linear predictor is better than SGD with linear predictor, 
and is comparable with 2-layer predictor.  



Conclusion

• A systematic analysis on the dynamics of non-contrastive self-
supervised learning (SSL) methods
• Part I Why we need (1) an extra predictor and (2) stop-gradient?
• Part II Why training doesn’t collapse to trivial solutions?
• Part III The role played by different hyperparameters 

• Propose DirectPred, a novel non-contrastive SSL method
• Directly align the eigenspace of the predictor 𝑊& with the correlation matrix 𝐹
• Comparable performance in downstream classification tasks, compared to vanilla BYOL

• CIFAR-10/STL-10
• ImageNet (60 epochs / 300 epochs)

Code: https://github.com/facebookresearch/luckmatters/tree/master/ssl



Thanks!


