Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise

Spencer Frei* Yuan Cao^ Quanquan Gu^

*UCLA Department of Statistics °UCLA Department of Computer Science

Nonconvexity, Overparameterization, and Noise



- How does SGD-training succeed at minimizing training error when the problem is *nonconvex*?
- Why can overparameterized neural networks generalize well when trained on noisy data?

Problem setup: adversarial label noise

- ▶ Underlying halfspace $y = \operatorname{sgn}(\langle v, x \rangle)$, but $(x, y) \sim \mathcal{D}$ has label corrupted $y \mapsto -y$ w.p. $p(x) \in [0, 1]$. OPT_{lin} = $\mathbb{E}_{x \sim \mathcal{D}} p(x)$.
- We will show SGD-trained NNs have classification error of at most $C\sqrt{\mathsf{OPT}_{\mathsf{lin}}}$.

Consider neural networks with one hidden layer,

$$f_x(W) := \sum_{i=1}^m a_j \sigma(\langle w_j, x \rangle),$$

 $W \in \mathbb{R}^{m \times d}$ has rows w_j^{\top} ; $\vec{a} \in \mathbb{R}^m$: second layer weights. σ : Leaky ReLU.

Population-level cross entropy loss and classif. error:

 $L(W) := \mathbb{E}_{(x,y)}\ell(yf_x(W)), \quad \operatorname{err}(W) = \mathbb{P}_{(x,y)}\left(y \neq \operatorname{sgn}(f_x(W))\right).$

• Online SGD:
$$(x_t, y_t) \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}$$
, with per-sample loss
 $\widehat{L}_t(W) := \ell(y_t f_{x_t}(W)) = \ell(y_t f_t(W)).$

• Updates given by $W^{(t+1)} = W^{(t)} - \eta \nabla \widehat{L}_t(W^{(t)}).$

Learning noisy halfspaces with neural networks

Theorem

If \mathcal{D}_x satisfies anti-concentration (e.g. log-concave isotropic), then with small initialization, constant step size, and time/sample complexity $T = C \cdot \mathsf{OPT}_{\mathsf{lin}}^{-3}$ we have

$$\exists t^* < T \text{ s.t. } \mathbb{P}_{(x,y)\sim\mathcal{D}}\left(y \neq \operatorname{sgn}(f_x(W^{(t^*)}))\right) \leq C \cdot \sqrt{\mathsf{OPT}_{\mathsf{lin}}}$$

- > All bounds (T, error) independent of width m of network
- Overparameterized NN will *not* overfit any more than a single neuron
- Optimization problem is significantly more nonconvex

Proof Overview

Standard Polyak-Łojasiewicz (PL) inequality:

$$\left\|\nabla \widehat{L}(W)\right\|^2 \ge \frac{\mu}{2} [\widehat{L}(W) - L^*]$$

leads to efficient guarantees of the form $L(W^{(t)}) \leq L^* + \varepsilon.$

We show a proxy PL inequality holds:

$$\left\|\nabla \widehat{L}(W)\right\| \geq \frac{\mu}{2} \left[\widehat{\mathcal{E}}(W) - C \cdot \sqrt{\mathsf{OPT}_{\mathsf{lin}}}\right],$$

where $\mathcal{E}(W)$ is a surrogate to the 0-1 loss. This leads to $\mathcal{E}(W^{(t)}) \leq C\sqrt{\mathsf{OPT}_{\mathsf{lin}}} + \varepsilon.$

Summary

- First result to show that SGD-trained NNs can generalize under adversarial label noise.
- Holds for NNs of arbitrary width and initialization.
 - ► Cannot be explained using ∞-width approximations like neural tangent kernel or mean field approximation
- Implies that SGD-trained networks will always be weak learners if linear classifiers are weak learners.