
Provable Generalization of SGD-trained

Neural Networks of Any Width in the

Presence of Adversarial Label Noise

Spencer Frei∗ Yuan Cao◦ Quanquan Gu◦

∗UCLA Department of Statistics
◦UCLA Department of Computer Science

1



Nonconvexity, Overparameterization, and Noise

I How does SGD-training succeed at minimizing training
error when the problem is nonconvex?

I Why can overparameterized neural networks generalize
well when trained on noisy data?
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Problem setup: adversarial label noise

I Underlying halfspace y = sgn(〈v, x〉), but (x, y) ∼ D has
label corrupted y 7→ −y w.p. p(x) ∈ [0, 1].

OPTlin = Ex∼Dp(x).

I We will show SGD-trained NNs have classification error
of at most C

√
OPTlin.

3



I Consider neural networks with one hidden layer,

fx(W ) :=
m∑
i=1

ajσ(〈wj, x〉),

W ∈ Rm×d has rows w>j ; ~a ∈ Rm: second layer weights.

I σ: Leaky ReLU.

I Population-level cross entropy loss and classif. error:

L(W ) := E(x,y)`(yfx(W )), err(W ) = P(x,y)

(
y 6= sgn

(
fx(W )

))
.

I Online SGD: (xt, yt)
i.i.d.∼ D, with per-sample loss

L̂t(W ) := `(ytfxt(W )) = `(ytft(W )).

I Updates given by

W (t+1) = W (t) − η∇L̂t(W
(t)).
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Learning noisy halfspaces with neural networks

Theorem
If Dx satisfies anti-concentration (e.g. log-concave isotropic),
then with small initialization, constant step size, and
time/sample complexity T = C · OPT−3lin we have

∃t∗ < T s.t. P(x,y)∼D

(
y 6= sgn

(
fx(W

(t∗))
))
≤ C ·

√
OPTlin

I All bounds (T , error) independent of width m of network

I Overparameterized NN will not overfit any more than a
single neuron

I Optimization problem is significantly more nonconvex
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Proof Overview

I Standard Polyak- Lojasiewicz (PL) inequality:∥∥∥∇L̂(W )
∥∥∥2 ≥ µ

2
[L̂(W )− L∗]

leads to efficient guarantees of the form
L(W (t)) ≤ L∗ + ε.

We show a proxy PL inequality holds:∥∥∥∇L̂(W )
∥∥∥ ≥ µ

2

[
Ê(W )− C ·

√
OPTlin

]
,

where E(W ) is a surrogate to the 0-1 loss. This leads to
E(W (t)) ≤ C

√
OPTlin + ε.

6



Summary

I First result to show that SGD-trained NNs can generalize
under adversarial label noise.

I Holds for NNs of arbitrary width and initialization.
I Cannot be explained using ∞-width approximations like

neural tangent kernel or mean field approximation

I Implies that SGD-trained networks will always be weak
learners if linear classifiers are weak learners.
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