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Introduction
* Theoretical Understanding of Deep Learning:
Overparametrization 27?7 Convergence (Efficient Training)

—

Initialization Implicit Bias (Generalization)

* Analysis for Linear Networks
Gradient flow on two-layer linear networks:
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Introduction
* Theoretical Understanding of Deep Learning:
Overparametrization 27?7 Convergence (Efficient Training)
Initialization Implicit Bias (Generalization)

* Analysis for Linear Networks: Prior Works
= Convergence
- Spectral Initialization (Saxes’14), Balanced Initialization (Arora’19)
Do not work for random initialization
- Kernel Regime (Du&Hu’19)
Random initialization, but requires large network width
= |mplicit Bias
- Vanishing Initialization (Gunasekar’17)
Initialization close to zero implies slow convergence

We study more general types of initialization



Main Results
We decompose the weights of the first layer according to the SVD of the input data:
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Matrix factorization for target Y = W7Y

Gradient flowon Uy, V

* Imbalance A =U{U; — VIV
* Previous work (Arora’19) studied the
balanced initialization A =0




Main Results

Imbalanced Initialization Guarantees Exponential Convergence
Theorem (Informal). If the initialization satisfies ¢ :== [A\.(A)]+ + A (—A)] L >0,
then the gradient flow converges to global optimum exponentially with a rate at
least c.
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* Level of imbalance !
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terms of their singular values and
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 Random initialization almost surely
has positive level of imbalance




Main Results
We decompose the weights of the first layer according to the SVD of the input data:
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Orthogonal Initialization Leads to Min-norm Solution
Proposition (Informal). If the initialization satisfies VU) = 0. U, U, =0,
then the gradient flow, if converges, finds the min-norm solution.

* Min-norm solution @ = arg min{||0||r : |[Y — X0|% = mmHY X0O|%}
@ERDXTFL

* Extension of “initializing © within the span of the input data leads to min-norm
solution” in standard linear regression problem



Main Results

Random initialization
Ulij ~ N (0,h7), [V]ij ~ N (0,h™1)
+ Large hidden layer width A
With high probability, we have
Imbalanced Initialization Guarantees Sufficient level of imbalance
Exponential Convergence
¢ = [Ar(AO)]4 + A (—A(0)]+ >0 c=1
Orthogonal Initialization Leads to Approximate Orthogonality
Min-norm Solution
VU{ =0 VUL ||p< O(h™1/?)
U Uy =0 U, U5 || p< O(R™1?)

" Theorem (Informal). With random initialization and large hidden layer width,\
the gradient flow finds a solution within O(h_l/Z) spectral norm distance to the
minimum norm solution with high probability.
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Conclusion
We study the gradient flow on two-layer linear networks:

* Imbalanced Initialization Guarantees Exponential Convergence
(Convergence)

* Orthogonal Initialization Leads to Min-norm Solution
(Implicit bias)

* Random initialization + large network width finds near
minimum norm solution efficiently

Thank you!
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