Agnostic Learning of Halfspaces
with Gradient Descent
via Soft Margins
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Halfspaces

Halfspaces are classifiers
h:RY — {£1} where

h(z) = sgn({w, x) — b)

for w € R, b € R.

ClassA [ =1
ClassB [ (v =-1)
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Agnostic (PAC) Learning of Halfspaces

Given distribution D over (z,y) € R? x {£1}.
Consider class of bias-free halfspaces,

H = {z+— sgn((w, z)) : w € R},
For binary classification, loss of interest is zero-one loss:
Uy, y) =Ly # 1)
Denote error of best-fitting halfspace
OPT := min Ezy~p L(y # h(x))

= 3&3 Pz y)~p (y # sgn((w, 1’>))-




Agnostic Learning of Halfspaces

OPT := I’g?r{l Eey~p Ly # h(zx)) = gg@ P(y # sgn((w, z))).

» How many samples are necessary to learn a halfspace
with error OPT + &7

» Are there computationally efficient algorithms for
learning a halfspace with error OPT 4 £7

» Do we need assumptions on D for sample or
computational efficiency?




Classical result: sample efficiency of ERM

Given i.i.d. samples {(x;,y;)}",, empirical risk minimizer
(ERM) over halfspaces is

. 1 ¢
hgrm(z) = Argmin, cpe— Z 1 (y; # sgn((w, z;))).
i=1

Since VC dimension of halfspaces over R? is d,

©(d/e*) samples necessary and sufficient
to achieve |err(hgry) — OPT| < e.
—> no assumptions on D necessary.
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Computational difficulties in finding ERM

. 1 ¢
hgrm(z) = Argmin, cpa— 2_1: 1 (yi # sgn({w, xl>))

» O(d/e?) samples suffice for learning up to OPT + ¢ error
with hggry (for any D)

» But zero-one loss is non-convex: finding ERM under this
loss is highly nontrivial!




Computational difficulties in learning halfspaces

» If OPT = 0, linear programming methods are efficient.
» If OPT > 0, more complicated.

» There exist D, s.t. learning up to O(OPT) + ¢ requires
superpoly runtime. [Daniely, 2016]

» If D, = N(0,1), learning up to OPT + ¢ requires
dP°¥y(1/2) runtime for SQ algorithms [Diakonikolas et al.
2020, Goel et al. 2020]

> Efficient algorithms known to learn up to O(OPT) + ¢
under assumptions on D, [Awasthi et al. 2014,
Diakonikolas et al. 2020]




Black-box optimization for classification

Standard approach for learning
linear classifiers: gradient descent
on convex surrogates (efficient).

Wi = Wy — an(wt)
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((z) € {log(14exp(—z)), max(1—z2,0), exp(—=z), ---}.

When OPT = 0 this works. But
when OPT > 0, unknown!




Agnostic learning of halfspaces with G.D.

Theorem

Suppose ( is convex, Lipschitz, decreasing. Assume D, is
sub-exponential and satisfies ‘anti-concentration’: U > 0,
such that p.d.f. p, (2) < U along 1D projections (w, ).
Then G.D. on ¢ learns halfspaces with classification error at
most C' - v/OPT in poly time/sample complexity.

» Covers log-concave isotropic D, (Gaussian, uniform, .. .)
» Although learning up to OPT is hard, black-box
optimization learns up to C'vOPT efficiently.

» First positive result showing standard G.D. learns
halfspaces with noise.




Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

If LY(w) =ELl(y(w, z)), L (w) = minE1(y(w,z) < 0),

wj := min L‘(w) (finding minima is easy),
lwll<R
vs.

wh, = min L" (w) (finding minima is hard).
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Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

Forv € RY, |jv]| =1,
soft margin function at v := ¢, (y) = Prup, (|(v, )| < 7).

For convex, 1-Lipschitz, decreasing ¢ with ¢(0) = 1 (for ||z| < 1),
want to compare

El(y{w,x)) VS. E1(y(w,z) < 0)

Consider normalized margin y(w/ ||w|| ,x). Three cases:
1. Correct, large margin: y(w/ [|w|,z) >~ > 0.
2. Correct, small ['soft’!] margin: y(w/ ||w|,z) € [0,7)

3. Incorrect: y(w/ ||w||,z) <O0.
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Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

Forv € RY, |jv]| =1,
soft margin function at v := ¢, (7) = Prop, (|(v, )| < 7).
For convex, 1-Lipschitz, decreasing ¢ with £(0) = 1 (for ||z| < 1)
EL(y(w, ) = B(y(w, )| 1(y{w/|lw], z) > )

+ L(y(w/llwl], ) € [0,7)) + + L(y(w/|w], z) < 0)]

< 60y [[wll) + Py (1)
+ (14 [Jw])P(y # sgn((w, z)))
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Soft margins connect minimizers of 0-1 and
surrogates
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Recall: dy /)10 (7) = Ponp, (I(0/ 0]l 2)] <7).
El(y(w, z)) < (1 + [Jwl)err(w) + dujw)(v) + €(llwll 7).

Assume w*, ||w*|| = 1 is s.t. err(w*) = OPT.

» If ‘hard margin' of g, ¢+ (y) = 0 for v < 7, so for p > 0,
El(ypr (w*, x)) < (14 pyg ' )OPT + £(p) = O(y; ' OPT).

» Matches lower bound of Ben-David et al., 2012
13




Soft margins connect minimizers of 0-1 and
surrogates

Recall: ¢y /0 (7) = m~Dz(|<U/ vl 2)] < 7).
El(y(w,z)) < (1 + [lwl)err(w) + ¢uyjjw) () + (1wl 7).

Assume w*, ||w*|| = 1 is s.t. err(w*) = OPT.

» If anti-concentration, ¢y (v) = O(7), so for p > 0,
El(ypy " (w*,z)) < (14 py 1 )OPT +C -~ + £(p).

> Take v = OPTY?2 gives O(OPT'/?).
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Summary

» Understanding G.D. for minimizing classification error
requires understanding minimizers of surrogate vs 0-1

» Soft margin (& benign distrib. assumptions) connect the
minimizers of surrogate to 0-1.

» G.D. is efficient, somewhat noise-robust, but not
optimally so

» Soft margin idea useful in other contexts

» Adversarial robustness + adversarial training (Zou*,
E.*, Gu, ICML 2021)

» Learning with neural networks trained by G.D. (F., Cao,
Gu, ICML 2021)
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