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Halfspaces

Halfspaces are classifiers
h : Rd → {±1} where

h(x) = sgn(〈w, x〉 − b)

for w ∈ Rd, b ∈ R.
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Agnostic (PAC) Learning of Halfspaces

Given distribution D over (x, y) ∈ Rd × {±1}.
Consider class of bias-free halfspaces,

H := {x 7→ sgn(〈w, x〉) : w ∈ Rd}.

For binary classification, loss of interest is zero-one loss:

`(y, ŷ) = 1(y 6= ŷ).

Denote error of best-fitting halfspace

OPT := min
h∈H

E(x,y)∼D 1(y 6= h(x))

= min
w∈Rd

P(x,y)∼D
(
y 6= sgn(〈w, x〉)

)
.
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Agnostic Learning of Halfspaces

OPT := min
h∈H

E(x,y)∼D 1(y 6= h(x)) = min
w∈Rd

P
(
y 6= sgn(〈w, x〉)

)
.

I How many samples are necessary to learn a halfspace
with error OPT + ε?

I Are there computationally efficient algorithms for
learning a halfspace with error OPT + ε?

I Do we need assumptions on D for sample or
computational efficiency?
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Classical result: sample efficiency of ERM

Given i.i.d. samples {(xi, yi)}ni=1, empirical risk minimizer
(ERM) over halfspaces is

hERM(x) := argminw∈Rd

1

n

n∑
i=1

1
(
yi 6= sgn(〈w, xi〉)

)
.

Since VC dimension of halfspaces over Rd is d,

Θ(d/ε2) samples necessary and sufficient

to achieve |err(hERM)− OPT| ≤ ε.

−→ no assumptions on D necessary.
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Computational difficulties in finding ERM

hERM(x) := argminw∈Rd

1

n

n∑
i=1

1
(
yi 6= sgn(〈w, xi〉)

)
.

I Θ(d/ε2) samples suffice for learning up to OPT + ε error
with hERM (for any D)

I But zero-one loss is non-convex: finding ERM under this
loss is highly nontrivial!
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Computational difficulties in learning halfspaces

I If OPT = 0, linear programming methods are efficient.

I If OPT > 0, more complicated.
I There exist Dx s.t. learning up to O(OPT) + ε requires

superpoly runtime. [Daniely, 2016]
I If Dx = N(0, I), learning up to OPT + ε requires

dpoly(1/ε) runtime for SQ algorithms [Diakonikolas et al.
2020, Goel et al. 2020]

I Efficient algorithms known to learn up to O(OPT) + ε
under assumptions on Dx [Awasthi et al. 2014,
Diakonikolas et al. 2020]
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Black-box optimization for classification

Standard approach for learning
linear classifiers: gradient descent
on convex surrogates (efficient).

wt+1 = wt − η∇L̂(wt)

= wt − η
1

n

n∑
i=1

∇`(yi · 〈wt, xi〉),

with

`(z) ∈ {log(1+exp(−z)), max(1−z, 0), exp(−z), · · · }.

When OPT = 0 this works. But
when OPT > 0, unknown!
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Agnostic learning of halfspaces with G.D.

Theorem
Suppose ` is convex, Lipschitz, decreasing. Assume Dx is
sub-exponential and satisfies ‘anti-concentration’: ∃U > 0,
such that p.d.f. p〈w,·〉(z) ≤ U along 1D projections 〈w, x〉.
Then G.D. on ` learns halfspaces with classification error at
most C ·

√
OPT in poly time/sample complexity.

I Covers log-concave isotropic Dx (Gaussian, uniform, . . . )

I Although learning up to OPT is hard, black-box
optimization learns up to C

√
OPT efficiently.

I First positive result showing standard G.D. learns
halfspaces with noise.
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Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

If L`(w) = E`(y〈w, x〉), L01(w) = minE1(y〈w, x〉 < 0),

w∗` := min
‖w‖≤R

L`(w) (finding minima is easy),

vs.

w∗01 := min
w
L01(w) (finding minima is hard).
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Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

For v ∈ Rd, ‖v‖ = 1,

soft margin function at v := φv(γ) = Px∼Dx(|〈v, x〉| ≤ γ).

For convex, 1-Lipschitz, decreasing ` with `(0) = 1 (for ‖x‖ ≤ 1),
want to compare

E`(y〈w, x〉) vs. E1(y〈w, x〉 < 0)

Consider normalized margin y〈w/ ‖w‖ , x〉. Three cases:

1. Correct, large margin: y〈w/ ‖w‖ , x〉 ≥ γ > 0.

2. Correct, small [‘soft’ !] margin: y〈w/ ‖w‖ , x〉 ∈ [0, γ)

3. Incorrect: y〈w/ ‖w‖ , x〉 < 0.
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Proof idea: compare minimizers of
surrogates for 0-1 vs. for 0-1 itself

For v ∈ Rd, ‖v‖ = 1,

soft margin function at v := φv(γ) = Px∼Dx(|〈v, x〉| ≤ γ).

For convex, 1-Lipschitz, decreasing ` with `(0) = 1 (for ‖x‖ ≤ 1)

E`(y〈w, x〉) = E`(y〈w, x〉)
[
1(y〈w/‖w‖, x〉 ≥ γ)

+ 1(y〈w/‖w‖, x〉 ∈ [0, γ)) + +1(y〈w/‖w‖, x〉 < 0)
]

≤ `(γ ‖w‖) + φw/‖w‖(γ)

+ (1 + ‖w‖)P(y 6= sgn(〈w, x〉))
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Soft margins connect minimizers of 0-1 and
surrogates

Recall: φv/‖v‖(γ) = Px∼Dx(|〈v/ ‖v‖ , x〉| ≤ γ).

E`(y〈w, x〉) ≤ (1 + ‖w‖)err(w) + φw/‖w‖(γ) + `(‖w‖ γ).

Assume w∗, ‖w∗‖ = 1 is s.t. err(w∗) = OPT.

I If ‘hard margin’ of γ0, φw∗(γ) = 0 for γ ≤ γ0, so for ρ > 0,
E`(yργ−10 〈w∗, x〉) ≤ (1 + ργ−10 )OPT + `(ρ) = O(γ−10 OPT).

I Matches lower bound of Ben-David et al., 2012
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Soft margins connect minimizers of 0-1 and
surrogates

Recall: φv/‖v‖(γ) = Px∼Dx(|〈v/ ‖v‖ , x〉| ≤ γ).

E`(y〈w, x〉) ≤ (1 + ‖w‖)err(w) + φw/‖w‖(γ) + `(‖w‖ γ).

Assume w∗, ‖w∗‖ = 1 is s.t. err(w∗) = OPT.

I If anti-concentration, φw∗(γ) = O(γ), so for ρ > 0,
E`(yργ−1〈w∗, x〉) ≤ (1 + ργ−1)OPT + C · γ + `(ρ).

I Take γ = OPT1/2 gives O(OPT1/2).
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Summary

I Understanding G.D. for minimizing classification error
requires understanding minimizers of surrogate vs 0-1

I Soft margin (& benign distrib. assumptions) connect the
minimizers of surrogate to 0-1.

I G.D. is efficient, somewhat noise-robust, but not
optimally so

I Soft margin idea useful in other contexts
I Adversarial robustness + adversarial training (Zou*,

F.*, Gu, ICML 2021)
I Learning with neural networks trained by G.D. (F., Cao,

Gu, ICML 2021)
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