Agnostic Learning of Halfspaces with Gradient Descent via Soft Margins

Spencer Frei* Yuan Cao° Quanquan Gu°

*UCLA Department of Statistics °UCLA Department of Computer Science

Halfspaces

Halfspaces are classifiers
$$h : \mathbb{R}^d \to \{\pm 1\}$$
 where

$$h(x) = \operatorname{sgn}(\langle w, x \rangle - b)$$

for $w \in \mathbb{R}^d, b \in \mathbb{R}$.

Agnostic (PAC) Learning of Halfspaces

Given distribution \mathcal{D} over $(x, y) \in \mathbb{R}^d \times \{\pm 1\}$. Consider class of bias-free halfspaces,

$$\mathcal{H} := \{ x \mapsto \operatorname{sgn}(\langle w, x \rangle) : w \in \mathbb{R}^d \}.$$

For binary classification, loss of interest is zero-one loss:

$$\ell(y,\widehat{y}) = \mathbb{1}(y \neq \widehat{y}).$$

Denote error of best-fitting halfspace

$$\begin{aligned} \mathsf{OPT} &:= \min_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{1}(y \neq h(x)) \\ &= \min_{w \in \mathbb{R}^d} \mathbb{P}_{(x,y) \sim \mathcal{D}} \big(y \neq \operatorname{sgn}(\langle w, x \rangle) \big) \end{aligned}$$

Agnostic Learning of Halfspaces

$$\mathsf{OPT} := \min_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{1}(y \neq h(x)) = \min_{w \in \mathbb{R}^d} \mathbb{P}(y \neq \operatorname{sgn}(\langle w, x \rangle)).$$

- How many samples are necessary to learn a halfspace with error OPT + ε?
- Are there computationally efficient algorithms for learning a halfspace with error OPT + ε?
- Do we need assumptions on D for sample or computational efficiency?

Classical result: sample efficiency of ERM

Given i.i.d. samples $\{(x_i, y_i)\}_{i=1}^n$, empirical risk minimizer (ERM) over halfspaces is

$$h_{\text{ERM}}(x) := \operatorname{argmin}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left(y_i \neq \operatorname{sgn}(\langle w, x_i \rangle)\right).$$

Since VC dimension of halfspaces over \mathbb{R}^d is d,

 $\Theta(d/\varepsilon^2)$ samples necessary and sufficient to achieve $|\operatorname{err}(h_{\operatorname{ERM}}) - \operatorname{OPT}| \le \varepsilon$.

ightarrow no assumptions on ${\cal D}$ necessary.

Computational difficulties in finding ERM

$$h_{\text{ERM}}(x) := \operatorname{argmin}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left(y_i \neq \operatorname{sgn}(\langle w, x_i \rangle)\right).$$

- Θ(d/ε²) samples suffice for learning up to OPT + ε error with h_{ERM} (for any D)
- But zero-one loss is <u>non-convex</u>: finding ERM under this loss is highly nontrivial!

Computational difficulties in learning halfspaces

- If OPT = 0, linear programming methods are efficient.
- If OPT > 0, more complicated.
 - There exist D_x s.t. learning up to O(OPT) + ε requires superpoly runtime. [Daniely, 2016]
 - If D_x = N(0, I), learning up to OPT + ε requires d^{poly(1/ε)} runtime for SQ algorithms [Diakonikolas et al. 2020, Goel et al. 2020]
 - Efficient algorithms known to learn up to O(OPT) + ε under assumptions on D_x [Awasthi et al. 2014, Diakonikolas et al. 2020]

Black-box optimization for classification

Standard approach for learning linear classifiers: gradient descent on convex surrogates (efficient).

When OPT = 0 this works. But when OPT > 0, unknown!

Agnostic learning of halfspaces with G.D.

Theorem

Suppose ℓ is convex, Lipschitz, decreasing. Assume \mathcal{D}_x is sub-exponential and satisfies 'anti-concentration': $\exists U > 0$, such that p.d.f. $p_{\langle w, \cdot \rangle}(z) \leq U$ along 1D projections $\langle w, x \rangle$. Then G.D. on ℓ learns halfspaces with classification error at most $C \cdot \sqrt{\mathsf{OPT}}$ in poly time/sample complexity.

- Covers log-concave isotropic \mathcal{D}_x (Gaussian, uniform, ...)
- Although learning up to OPT is hard, black-box optimization learns up to $C\sqrt{\text{OPT}}$ efficiently.
- First positive result showing standard G.D. learns halfspaces with noise.

Proof idea: compare minimizers of surrogates for 0-1 vs. for 0-1 itself

If $L^{\ell}(w) = \mathbb{E}\ell(y\langle w, x \rangle)$, $L^{01}(w) = \min \mathbb{E} \mathbbm{1}(y\langle w, x \rangle < 0)$,

$$w_{\ell}^* := \min_{\|w\| \le R} L^{\ell}(w) \quad \text{(finding minima is easy)},$$

VS.

 $w_{01}^* := \min_w L^{01}(w) \quad (\text{finding minima is hard}).$

Proof idea: compare minimizers of surrogates for 0-1 vs. for 0-1 itself

For $v \in \mathbb{R}^d$, ||v|| = 1,

soft margin function at $v := \phi_v(\gamma) = \mathbb{P}_{x \sim \mathcal{D}_x}(|\langle v, x \rangle| \leq \gamma).$

For convex, 1-Lipschitz, decreasing ℓ with $\ell(0)=1$ (for $\|x\|\leq 1$), want to compare

$$\mathbb{E}\ell(y\langle w,x\rangle) \qquad \qquad \text{vs.} \qquad \qquad \mathbb{E}\,\mathbbm{1}(y\langle w,x\rangle<0)$$

Consider normalized margin $y\langle w / ||w||, x \rangle$. Three cases:

- 1. Correct, large margin: $y\langle w/ \|w\|, x\rangle \geq \gamma > 0$.
- 2. Correct, small ['soft'!] margin: $y\langle w/ \|w\|, x\rangle \in [0, \gamma)$

3. Incorrect:
$$y\langle w/ \|w\|, x\rangle < 0$$
.

Proof idea: compare minimizers of surrogates for 0-1 vs. for 0-1 itself

For $v \in \mathbb{R}^d$, ||v|| = 1,

soft margin function at $v := \phi_v(\gamma) = \mathbb{P}_{x \sim \mathcal{D}_x}(|\langle v, x \rangle| \leq \gamma).$

For convex, 1-Lipschitz, decreasing ℓ with $\ell(0) = 1$ (for $||x|| \le 1$) $\mathbb{E}\ell(y\langle w, x \rangle) = \mathbb{E}\ell(y\langle w, x \rangle) \Big[\mathbb{1}(y\langle w/||w||, x \rangle \ge \gamma) \\
+ \mathbb{1}(y\langle w/||w||, x \rangle \in [0, \gamma)) + + \mathbb{1}(y\langle w/||w||, x \rangle < 0) \Big] \\
\leq \ell(\gamma ||w||) + \phi_{w/||w||}(\gamma) \\
+ (1 + ||w||) \mathbb{P}(y \ne \operatorname{sgn}(\langle w, x \rangle))$

Soft margins connect minimizers of 0-1 and surrogates

 $\text{Recall: } \phi_{v/\|v\|}(\gamma) = \mathbb{P}_{x \sim \mathcal{D}_x}(\left|\left\langle v / \left\|v\right\|, x\right\rangle\right| \leq \gamma).$

 $\mathbb{E}\ell(y\langle w, x\rangle) \le (1 + \|w\|)\operatorname{err}(w) + \phi_{w/\|w\|}(\gamma) + \ell(\|w\|\gamma).$

Assume w^* , $||w^*|| = 1$ is s.t. $\operatorname{err}(w^*) = \mathsf{OPT}$.

- ► If 'hard margin' of γ_0 , $\phi_{w^*}(\gamma) = 0$ for $\gamma \leq \gamma_0$, so for $\rho > 0$, $\mathbb{E}\ell(y\rho\gamma_0^{-1}\langle w^*, x \rangle) \leq (1 + \rho\gamma_0^{-1})\mathsf{OPT} + \ell(\rho) = O(\gamma_0^{-1}\mathsf{OPT}).$
- Matches lower bound of Ben-David et al., 2012

Soft margins connect minimizers of 0-1 and surrogates

 $\text{Recall: } \phi_{v/\|v\|}(\gamma) = \mathbb{P}_{x \sim \mathcal{D}_x}(|\langle v/ \|v\|, x\rangle| \leq \gamma).$

 $\mathbb{E}\ell(y\langle w, x\rangle) \le (1 + \|w\|)\mathrm{err}(w) + \phi_{w/\|w\|}(\gamma) + \ell(\|w\|\gamma).$

Assume w^* , $||w^*|| = 1$ is s.t. $\operatorname{err}(w^*) = \mathsf{OPT}$.

If anti-concentration,
$$\phi_{w^*}(\gamma) = O(\gamma)$$
, so for $\rho > 0$,
 $\mathbb{E}\ell(y\rho\gamma^{-1}\langle w^*, x\rangle) \leq (1+\rho\gamma^{-1})\mathsf{OPT} + C \cdot \gamma + \ell(\rho).$

• Take
$$\gamma = \mathsf{OPT}^{1/2}$$
 gives $O(\mathsf{OPT}^{1/2})$.

Summary

- Understanding G.D. for minimizing classification error requires understanding minimizers of surrogate vs 0-1
- Soft margin (& benign distrib. assumptions) connect the minimizers of surrogate to 0-1.
- G.D. is efficient, somewhat noise-robust, but not optimally so
- Soft margin idea useful in other contexts
 - Adversarial robustness + adversarial training (Zou*, <u>F.*</u>, Gu, ICML 2021)
 - Learning with neural networks trained by G.D. (<u>F.</u>, Cao, Gu, ICML 2021)