Agnostic Learning of Halfspaces with Gradient Descent

 via Soft Margins

Halfspaces

Halfspaces are classifiers $h: \mathbb{R}^{d} \rightarrow\{ \pm 1\}$ where

$$
h(x)=\operatorname{sgn}(\langle w, x\rangle-b)
$$

for $w \in \mathbb{R}^{d}, b \in \mathbb{R}$.

Agnostic (PAC) Learning of Halfspaces

Given distribution \mathcal{D} over $(x, y) \in \mathbb{R}^{d} \times\{ \pm 1\}$.
Consider class of bias-free halfspaces,

$$
\mathcal{H}:=\left\{x \mapsto \operatorname{sgn}(\langle w, x\rangle): w \in \mathbb{R}^{d}\right\}
$$

For binary classification, loss of interest is zero-one loss:

$$
\ell(y, \widehat{y})=\mathbb{1}(y \neq \widehat{y})
$$

Denote error of best-fitting halfspace

$$
\begin{aligned}
\mathrm{OPT} & :=\min _{h \in \mathcal{H}} \mathbb{E}_{(x, y) \sim \mathcal{D}} \mathbb{1}(y \neq h(x)) \\
& =\min _{w \in \mathbb{R}^{d}} \mathbb{P}_{(x, y) \sim \mathcal{D}}(y \neq \operatorname{sgn}(\langle w, x\rangle)) .
\end{aligned}
$$

Agnostic Learning of Halfspaces

$$
\text { OPT }:=\min _{h \in \mathcal{H}} \mathbb{E}_{(x, y) \sim} \mathcal{D} \mathbb{1}(y \neq h(x))=\min _{w \in \mathbb{R}^{\mathbb{A}}} \mathbb{P}(y \neq \operatorname{sgn}(\langle w, x\rangle)) .
$$

- How many samples are necessary to learn a halfspace with error OPT $+\varepsilon$?
- Are there computationally efficient algorithms for learning a halfspace with error OPT $+\varepsilon$?
- Do we need assumptions on \mathcal{D} for sample or computational efficiency?

Classical result: sample efficiency of ERM

Given i.i.d. samples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, empirical risk minimizer (ERM) over halfspaces is

$$
h_{\mathrm{ERM}}(x):=\operatorname{argmin}_{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(y_{i} \neq \operatorname{sgn}\left(\left\langle w, x_{i}\right\rangle\right)\right) .
$$

Since VC dimension of halfspaces over \mathbb{R}^{d} is d,
$\Theta\left(d / \varepsilon^{2}\right)$ samples necessary and sufficient to achieve $\mid \operatorname{err}\left(h_{\text {ERM }}\right)-$ OPT $\mid \leq \varepsilon$.
\longrightarrow no assumptions on \mathcal{D} necessary.

Computational difficulties in finding ERM

$$
h_{\mathrm{ERM}}(x):=\operatorname{argmin}_{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(y_{i} \neq \operatorname{sgn}\left(\left\langle w, x_{i}\right\rangle\right)\right) .
$$

- $\Theta\left(d / \varepsilon^{2}\right)$ samples suffice for learning up to OPT $+\varepsilon$ error with $h_{\text {ERM }}$ (for any \mathcal{D})
- But zero-one loss is non-convex: finding ERM under this loss is highly nontrivial!

Computational difficulties in learning halfspaces

- If $O P T=0$, linear programming methods are efficient.
- If OPT >0, more complicated.
- There exist \mathcal{D}_{x} s.t. learning up to $O(\mathrm{OPT})+\varepsilon$ requires superpoly runtime. [Daniely, 2016]
- If $\mathcal{D}_{x}=N(0, I)$, learning up to OPT $+\varepsilon$ requires $d^{\text {poly }(1 / \varepsilon)}$ runtime for SQ algorithms [Diakonikolas et al. 2020, Goel et al. 2020]
- Efficient algorithms known to learn up to O (OPT) $+\varepsilon$ under assumptions on \mathcal{D}_{x} [Awasthi et al. 2014, Diakonikolas et al. 2020]

Black-box optimization for classification

Standard approach for learning
linear classifiers: gradient descent on convex surrogates (efficient).

$$
\begin{aligned}
w_{t+1} & =w_{t}-\eta \nabla \widehat{L}\left(w_{t}\right) \\
& =w_{t}-\eta \frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(y_{i} \cdot\left\langle w_{t}, x_{i}\right\rangle\right)
\end{aligned}
$$

with

$\ell(z) \in\{\log (1+\exp (-z)), \max (1-z, 0), \exp (-z), \cdots\}$.
When OPT $=0$ this works. But
when OPT >0, unknown!

Agnostic learning of halfspaces with G.D.

Theorem

Suppose ℓ is convex, Lipschitz, decreasing. Assume \mathcal{D}_{x} is sub-exponential and satisfies 'anti-concentration': $\exists U>0$, such that p.d.f. $p_{\langle w,\rangle}(z) \leq U$ along 1D projections $\langle w, x\rangle$.
Then G.D. on ℓ learns halfspaces with classification error at most $C \cdot \sqrt{\text { OPT }}$ in poly time/sample complexity.

- Covers log-concave isotropic \mathcal{D}_{x} (Gaussian, uniform, ...)
- Although learning up to OPT is hard, black-box optimization learns up to $C \sqrt{\text { OPT efficiently. }}$
- First positive result showing standard G.D. learns halfspaces with noise.

Proof idea: compare minimizers of surrogates for $0-1$ vs. for $0-1$ itself

$$
\text { If } L^{\ell}(w)=\mathbb{E} \ell(y\langle w, x\rangle), L^{01}(w)=\min \mathbb{E} \mathbb{1}(y\langle w, x\rangle<0)
$$

$$
w_{\ell}^{*}:=\min _{\|w\| \leq R} L^{\ell}(w) \quad \text { (finding minima is easy) }
$$

vs.

$$
w_{01}^{*}:=\min _{w} L^{01}(w) \quad(\text { finding minima is hard })
$$

Proof idea: compare minimizers of surrogates for 0-1 vs. for 0-1 itself

For $v \in \mathbb{R}^{d},\|v\|=1$,

$$
\text { soft margin function at } v:=\phi_{v}(\gamma)=\mathbb{P}_{x \sim \mathcal{D}_{x}}(|\langle v, x\rangle| \leq \gamma) .
$$

For convex, 1-Lipschitz, decreasing ℓ with $\ell(0)=1$ (for $\|x\| \leq 1$), want to compare

$$
\mathbb{E} \ell(y\langle w, x\rangle) \quad \text { vs. } \quad \mathbb{E} \mathbb{1}(y\langle w, x\rangle<0)
$$

Consider normalized margin $y\langle w /\|w\|, x\rangle$. Three cases:

1. Correct, large margin: $y\langle w /\|w\|, x\rangle \geq \gamma>0$.
2. Correct, small ['soft' !] margin: $y\langle w /\|w\|, x\rangle \in[0, \gamma)$
3. Incorrect: $y\langle w /\|w\|, x\rangle<0$.

Proof idea: compare minimizers of surrogates for $0-1$ vs. for $0-1$ itself

For $v \in \mathbb{R}^{d},\|v\|=1$, soft margin function at $v:=\phi_{v}(\gamma)=\mathbb{P}_{x \sim \mathcal{D}_{x}}(|\langle v, x\rangle| \leq \gamma)$.

For convex, 1-Lipschitz, decreasing ℓ with $\ell(0)=1$ (for $\|x\| \leq 1$)

$$
\begin{aligned}
\mathbb{E} \ell(y\langle w, x\rangle)= & \mathbb{E} \ell(y\langle w, x\rangle)[\mathbb{1}(y\langle w /\|w\|, x\rangle \geq \gamma) \\
+ & \mathbb{1}(y\langle w /\|w\|, x\rangle \in[0, \gamma))++\mathbb{1}(y\langle w /\|w\|, x\rangle<0)] \\
\leq & \ell(\gamma\|w\|)+\phi_{w /\|w\|}(\gamma) \\
& +(1+\|w\|) \mathbb{P}(y \neq \operatorname{sgn}(\langle w, x\rangle))
\end{aligned}
$$

Soft margins connect minimizers of 0-1 and surrogates

Recall: $\phi_{v /\|v\|}(\gamma)=\mathbb{P}_{x \sim \mathcal{D}_{x}}(|\langle v /\|v\|, x\rangle| \leq \gamma)$.

$$
\mathbb{E} \ell(y\langle w, x\rangle) \leq(1+\|w\|) \operatorname{err}(w)+\phi_{w /\|w\|}(\gamma)+\ell(\|w\| \gamma)
$$

Assume $w^{*},\left\|w^{*}\right\|=1$ is s.t. $\operatorname{err}\left(w^{*}\right)=$ OPT.

- If 'hard margin' of $\gamma_{0}, \phi_{w^{*}}(\gamma)=0$ for $\gamma \leq \gamma_{0}$, so for $\rho>0$, $\mathbb{E} \ell\left(y \rho \gamma_{0}^{-1}\left\langle w^{*}, x\right\rangle\right) \leq\left(1+\rho \gamma_{0}^{-1}\right) \mathrm{OPT}+\ell(\rho)=O\left(\gamma_{0}^{-1} \mathrm{OPT}\right)$.
- Matches lower bound of Ben-David et al., 2012

Soft margins connect minimizers of 0-1 and surrogates

Recall: $\phi_{v /\|v\|}(\gamma)=\mathbb{P}_{x \sim \mathcal{D}_{x}}(|\langle v /\|v\|, x\rangle| \leq \gamma)$.

$$
\mathbb{E} \ell(y\langle w, x\rangle) \leq(1+\|w\|) \operatorname{err}(w)+\phi_{w /\|w\|}(\gamma)+\ell(\|w\| \gamma) .
$$

Assume $w^{*},\left\|w^{*}\right\|=1$ is s.t. $\operatorname{err}\left(w^{*}\right)=$ OPT.

- If anti-concentration, $\phi_{w^{*}}(\gamma)=O(\gamma)$, so for $\rho>0$, $\mathbb{E} \ell\left(y \rho \gamma^{-1}\left\langle w^{*}, x\right\rangle\right) \leq\left(1+\rho \gamma^{-1}\right) \mathrm{OPT}+C \cdot \gamma+\ell(\rho)$.
- Take $\gamma=\mathrm{OPT}^{1 / 2}$ gives $O\left(\mathrm{OPT}^{1 / 2}\right)$.

Summary

- Understanding G.D. for minimizing classification error requires understanding minimizers of surrogate vs 0-1
- Soft margin (\& benign distrib. assumptions) connect the minimizers of surrogate to 0-1.
- G.D. is efficient, somewhat noise-robust, but not optimally so
- Soft margin idea useful in other contexts
- Adversarial robustness + adversarial training (Zou*, F.*, Gu, ICML 2021)
- Learning with neural networks trained by G.D. (F., Cao, Gu, ICML 2021)

