Provably Strict Generalisation Benefit for Equivariant Models

Bryn Elesedy and Sheheryar Zaidi University of Oxford

ICML 2021

What this paper is about

Background:

- Significant interest in symmetry in machine learning
- Improved generalisation is observed in practice
- Existing (worst-case) theoretical results do not show this

Contribution:

- Framework for analysing equivariant models and exact calculation of generalisation improvement

Notation

Input space \mathcal{X}, output space $\mathcal{Y}=\mathbb{R}^{k}$ with inner product $\langle\cdot, \cdot\rangle$

Compact group \mathcal{G} with action ϕ on \mathcal{X} and orthogonal representation ψ on \mathcal{Y}

Averaging operator for equivariance

$$
\mathcal{Q} f(x)=\int_{\mathcal{G}} \psi\left(g^{-1}\right) f(\phi(g) x) \mathrm{d} \lambda(g)
$$

where λ is the Haar measure on \mathcal{G}

Setting

Let μ be a \mathcal{G}-invariant distribution on \mathcal{X}
Consider

$$
V=L^{2}(\mathcal{X}, \mu ; \mathcal{Y})
$$

which is the vector space of functions $f: \mathcal{X} \rightarrow \mathcal{Y}$ with inner product

$$
\left\langle f_{1}, f_{2}\right\rangle_{\mu}=\int_{\mathcal{X}}\left\langle f_{1}(x), f_{2}(x)\right\rangle \mathrm{d} \mu(x)
$$

and norm $\|f\|_{\mu}=\sqrt{\langle f, f\rangle_{\mu}}<\infty$

Central Observations

Properties of \mathcal{Q}

1. Identification: $\mathcal{Q} f=f \Longleftrightarrow f$ is \mathcal{G}-equivariant
2. Projection: \mathcal{Q} is a projection
3. Decomposition: $f=\bar{f}+f^{\perp}$ where $\mathcal{Q} \bar{f}=\bar{f}$ and $\mathcal{Q} f^{\perp}=0$
4. Self-Adjoint: $\left\langle\mathcal{Q} f_{1}, f_{2}\right\rangle_{\mu}=\left\langle f_{1}, \mathcal{Q} f_{2}\right\rangle_{\mu}$

Conclusion: orthogonal decomposition

$$
V=S \oplus A
$$

where $S=\{f \in V: f$ is \mathcal{G}-equivariant $\}$ and $A=\operatorname{null}(\mathcal{Q})$

Structure of Function Spaces: Example

$$
\begin{aligned}
& X \sim \mathcal{N}\left(0, I_{2}\right) \text { and } \mathcal{G}=\mathrm{SO}(2) \\
& V=\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { with } \mathbb{E}\left[f(X)^{2}\right]<\infty\right\}
\end{aligned}
$$

A picture for $f(r, \theta)=r \cos (r-2 \theta) \cos (r+2 \theta)$

Generalisation Benefit of Equivariance

Goal: Compare any predictor f to its equivariant version $\bar{f}=\mathcal{Q} f$

Setup:

- Task: $X \sim \mu, Y=f^{*}(X)+\xi$ with $\mathbb{E}[\xi]=0$ and $\xi \Perp X$
- Equivariant target: $f^{*}(X)=\mathbb{E}[Y \mid X]$ is \mathcal{G}-equivariant

Result: Recall $f=\bar{f}+f^{\perp}$, the generalisation gap satisfies

$$
\Delta(f, \bar{f}):=\mathbb{E}\left[(f(X)-Y)^{2}\right]-\mathbb{E}\left[(\bar{f}(X)-Y)^{2}\right]=\left\|f^{\perp}\right\|_{\mu}^{2}
$$

This is strictly positive if f is not equivariant!

Theorem: The Linear Case

Orthogonal representations ϕ on $\mathcal{X}=\mathbb{R}^{d}$ and ψ on $\mathcal{Y}=\mathbb{R}^{k}$
$X \sim \mathcal{N}(0, I)$ and $Y=h_{\Theta}(X)+\xi$ where $h_{\Theta}(x)=\Theta^{\top} x$ is equivariant and $\mathbb{E}[\xi]=0, \operatorname{Cov}[\xi]=I, \xi \Perp X$

For a linear predictor f fit by least-squares on n i.i.d. examples:

- $n>d+1$:

$$
\mathbb{E}[\Delta(f, \bar{f})]=\frac{d k-\left(\chi_{\phi} \mid \chi_{\psi}\right)}{n-d-1}
$$

- $n \in[d-1, d+1]: \mathbb{E}[\Delta(f, \bar{f})]=\infty$
- $n<d-1$:

$$
\mathbb{E}[\Delta(f, \bar{f})]=\frac{n\left(d k-\left(\chi_{\phi} \mid \chi_{\psi}\right)\right)}{d(d-n-1)}+\mathcal{E}_{\mathcal{G}}(n, d)
$$

The End

More in the paper: feature averaging, ideas for training NNs...

Bryn Elesedy

Sheheryar Zaidi

