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What this paper is about

Background:

• Significant interest in symmetry in machine learning

• Improved generalisation is observed in practice

• Existing (worst-case) theoretical results do not show this

Contribution:

• Framework for analysing equivariant models and exact
calculation of generalisation improvement



Notation

Input space X , output space Y = Rk with inner product 〈·, ·〉

Compact group G with action φ on X and orthogonal
representation ψ on Y

Averaging operator for equivariance

Qf(x) =

∫
G
ψ(g−1)f(φ(g)x) dλ(g)

where λ is the Haar measure on G



Setting

Let µ be a G-invariant distribution on X

Consider
V = L2(X , µ;Y)

which is the vector space of functions f : X → Y with inner
product

〈f1, f2〉µ =

∫
X
〈f1(x), f2(x)〉 dµ(x)

and norm ‖f‖µ =
√
〈f, f〉µ <∞



Central Observations

Properties of Q
1. Identification: Qf = f ⇐⇒ f is G-equivariant

2. Projection: Q is a projection

3. Decomposition: f = f̄ + f⊥ where Qf̄ = f̄ and Qf⊥ = 0

4. Self-Adjoint: 〈Qf1, f2〉µ = 〈f1,Qf2〉µ

Conclusion: orthogonal decomposition

V = S ⊕A

where S = {f ∈ V : f is G-equivariant} and A = null(Q)



Structure of Function Spaces: Example

X ∼ N (0, I2) and G = SO(2)

V = {f : R2 → R with E[f(X)2] <∞}

A picture for f(r, θ) = r cos (r − 2θ) cos (r + 2θ)



Generalisation Benefit of Equivariance

Goal: Compare any predictor f to its equivariant version f̄ = Qf

Setup:

• Task: X ∼ µ, Y = f∗(X) + ξ with E[ξ] = 0 and ξ ⊥⊥ X
• Equivariant target: f∗(X) = E[Y |X] is G-equivariant

Result: Recall f = f̄ + f⊥, the generalisation gap satisfies

∆(f, f̄) := E[(f(X)− Y )2]− E[(f̄(X)− Y )2] = ‖f⊥‖2µ

This is strictly positive if f is not equivariant!



Theorem: The Linear Case

Orthogonal representations φ on X = Rd and ψ on Y = Rk

X ∼ N (0, I) and Y = hΘ(X) + ξ where hΘ(x) = Θ>x is
equivariant and E[ξ] = 0, Cov[ξ] = I, ξ ⊥⊥ X

For a linear predictor f fit by least-squares on n i.i.d. examples:

• n > d+ 1:

E[∆(f, f̄)] =
dk − (χφ|χψ)

n− d− 1

• n ∈ [d− 1, d+ 1]: E[∆(f, f̄)] =∞
• n < d− 1:

E[∆(f, f̄)] =
n(dk − (χφ|χψ))

d(d− n− 1)
+ EG(n, d)



The End

More in the paper: feature averaging, ideas for training NNs. . .
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