Provably Strict Generalisation Benefit for Equivariant Models

Bryn Elesedy and Sheheryar Zaidi University of Oxford

ICML 2021

What this paper is about

Background:

- Significant interest in symmetry in machine learning
- Improved generalisation is observed in practice
- Existing (worst-case) theoretical results do not show this

Contribution:

• Framework for analysing equivariant models and exact calculation of generalisation improvement

Notation

Input space \mathcal{X} , output space $\mathcal{Y} = \mathbb{R}^k$ with inner product $\langle \cdot, \cdot \rangle$

Compact group ${\mathcal G}$ with action ϕ on ${\mathcal X}$ and orthogonal representation ψ on ${\mathcal Y}$

Averaging operator for equivariance

$$\mathcal{Q}f(x) = \int_{\mathcal{G}} \psi(g^{-1}) f(\phi(g)x) \,\mathrm{d}\lambda(g)$$

where λ is the Haar measure on $\mathcal G$

Setting

Let μ be a ${\mathcal{G}}\text{-invariant}$ distribution on ${\mathcal{X}}$

Consider

$$V = L^2(\mathcal{X}, \mu; \mathcal{Y})$$

which is the vector space of functions $f:\mathcal{X}\to\mathcal{Y}$ with inner product

$$\langle f_1, f_2 \rangle_{\mu} = \int_{\mathcal{X}} \langle f_1(x), f_2(x) \rangle \,\mathrm{d}\mu(x)$$

and norm $\|f\|_{\mu} = \sqrt{\langle f, f \rangle_{\mu}} < \infty$

Central Observations

Properties of ${\mathcal Q}$

- 1. Identification: $Qf = f \iff f$ is G-equivariant
- 2. Projection: \mathcal{Q} is a projection
- 3. Decomposition: $f=\bar{f}+f^{\scriptscriptstyle \perp}$ where $\mathcal{Q}\bar{f}=\bar{f}$ and $\mathcal{Q}f^{\scriptscriptstyle \perp}=0$
- 4. Self-Adjoint: $\langle \mathcal{Q}f_1, f_2 \rangle_\mu = \langle f_1, \mathcal{Q}f_2 \rangle_\mu$

Conclusion: orthogonal decomposition

$$V = S \oplus A$$

where $S = \{f \in V : f \text{ is } \mathcal{G}\text{-equivariant}\}$ and $A = \text{null}(\mathcal{Q})$

Structure of Function Spaces: Example

$$X \sim \mathcal{N}(0, I_2)$$
 and $\mathcal{G} = \mathsf{SO}(2)$

$$V = \{f : \mathbb{R}^2 \to \mathbb{R} \text{ with } \mathbb{E}[f(X)^2] < \infty\}$$

A picture for $f(r, \theta) = r \cos{(r - 2\theta)} \cos{(r + 2\theta)}$

Generalisation Benefit of Equivariance

Goal: Compare any predictor f to its equivariant version $\overline{f} = Qf$

Setup:

- Task: $X \sim \mu$, $Y = f^*(X) + \xi$ with $\mathbb{E}[\xi] = 0$ and $\xi \perp\!\!\!\perp X$
- Equivariant target: $f^*(X) = \mathbb{E}[Y|X]$ is \mathcal{G} -equivariant

Result: Recall $f = \overline{f} + f^{\perp}$, the generalisation gap satisfies

$$\Delta(f,\bar{f}) \coloneqq \mathbb{E}[(f(X)-Y)^2] - \mathbb{E}[(\bar{f}(X)-Y)^2] = \|f^{\perp}\|_{\mu}^2$$

This is *strictly positive* if f is not equivariant!

Theorem: The Linear Case

Orthogonal representations ϕ on $\mathcal{X} = \mathbb{R}^d$ and ψ on $\mathcal{Y} = \mathbb{R}^k$

$$X \sim \mathcal{N}(0, I)$$
 and $Y = h_{\Theta}(X) + \xi$ where $h_{\Theta}(x) = \Theta^{\top} x$ is equivariant and $\mathbb{E}[\xi] = 0$, $\operatorname{Cov}[\xi] = I$, $\xi \perp \!\!\!\perp X$

For a linear predictor f fit by least-squares on n i.i.d. examples:

•
$$n > d + 1$$
:

$$\mathbb{E}[\Delta(f, \bar{f})] = \frac{dk - (\chi_{\phi} | \chi_{\psi})}{n - d - 1}$$
• $n \in [d - 1, d + 1]$: $\mathbb{E}[\Delta(f, \bar{f})] = \infty$
• $n < d - 1$:
- $n(dk - (\chi_{\phi} | \chi_{\psi}))$

$$\mathbb{E}[\Delta(f,\bar{f})] = \frac{n(dk - (\chi_{\phi}|\chi_{\psi}))}{d(d-n-1)} + \mathcal{E}_{\mathcal{G}}(n,d)$$

The End

More in the paper: feature averaging, ideas for training NNs...

Bryn Elesedy

Sheheryar Zaidi