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Introduction

Algorithmic regularization techniques endow deep learning systems
with reach inductive bias that helps them generalize.

We focus on dropout [Hinton et al., 2012], which is one of the most
popular regularization techniques in today’s practice of deep learning.

In particular, for matrix sensing and two-layer ReLU networks,

I We analyze the explicit forms of the regularizer induced by dropout,

I We demonstrate the capacity control due to dropout, by providing
precise generalization error bounds.
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Dropout in Matrix Sensing

Goal: recover W∗ ∈ Rd2×d0 from n linear measurements yi = 〈Xi ,W∗〉
Minimize squared loss in the factored form (W2 ∈ Rd2×d1 , W1 ∈ Rd1×d0):

min
W2,W1

L̂(W2,W1) :=
1

n

n∑
i=1

(yi − 〈W2W1,Xi 〉)2

MovieLens-10M Dataset

Collaborative filtering: 10M ratings for 11K movies by 72K users
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MovieLens-10M Dataset

Without explicit regularization, SGD suffers from gross overfitting

Dropout consistently outperforms even with an early stopping oracle

plain SGD dropout
width last iterate best iterate p = 0.1 p = 0.2 p = 0.3 p = 0.4
m = 30 0.8041 0.7938 0.7805 0.785 0.7991 0.8186
m = 70 0.8315 0.7897 0.7899 0.7771 0.7763 0.7833
m = 110 0.8431 0.7873 0.7988 0.7813 0.7742 0.7743
m = 150 0.8472 0.7858 0.8042 0.7852 0.7756 0.7722
m = 190 0.8473 0.7844 0.8069 0.7879 0.7772 0.772
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Dropout in Matrix Sensing

Goal: recover W∗ ∈ Rd2×d0 from n linear measurements yi = 〈Xi ,W∗〉
Minimize squared loss in the factored form (W2 ∈ Rd2×d1 , W1 ∈ Rd1×d0):

min
W2,W1

L̂(W2,W1) :=
1

n

n∑
i=1

(yi − 〈W2W1,Xi 〉)2

dropout objective = L̂(W2,W1) + dropout regularizer

Theorem (Explicit Form and Capacity Control)

Xi indicator matrix ∼ P(row = i , col = j) = P(row = i)P(col = j) = p(i)q(j).

dropout regularizer ∝ ‖ diag(
√

p̂)W2W1 diag(
√

q̂)‖2∗

With probability 1− δ over the random draw of a sample of size n, the dropout rule
output with dropout regularizer ≤ α/d1 has generalization gap bounded as:

generalization gap .

√
αd2 log(d2) + log(1/δ)

n
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2-layer ReLU Nets

2-layer ReLU nets, single ouput d2 = 1, computing f (x;W2,W1) = W2σ(W1x).

Class of networks with bounded dropout regularizer

Hr := {f (·;w), dropout regularizer ≤ r}

β-retentiveness: for any non-zero vector v, it holds that Eσ(v>x)2 ≥ βE(v>x)2

Theorem (Rademacher complexity - Upperbound)

For any sample S of size n, RS(Hr ) ≤
2
√

d1r‖X‖C†
n
√
β

.

Theorem (Rademacher complexity - Lowerbound)

There is a constant c such that for any r>0, RS(Hr )≥
c
√

d1r‖X‖C†
n

.
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Empirical Results

MNIST dataset of handwritten digits, extract two classes {4, 7}

The trained networks achieve %100 training accuracy
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Thanks for your attention!
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