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Introduction

@ Algorithmic regularization techniques endow deep learning systems
with reach inductive bias that helps them generalize.
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Introduction

@ Algorithmic regularization techniques endow deep learning systems
with reach inductive bias that helps them generalize.

e We focus on dropout [Hinton et al., 2012], which is one of the most
popular regularization techniques in today's practice of deep learning.

@ In particular, for matrix sensing and two-layer ReLU networks,

» We analyze the explicit forms of the regularizer induced by dropout,

» We demonstrate the capacity control due to dropout, by providing
precise generalization error bounds.
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Dropout in Matrix Sensing

@ Goal: recover W, € R2*% from n linear measurements y; = (X;, W..)
@ Minimize squared loss in the factored form (W, € R%*% W, € R%*%);

g 1
min L(WQ,Wl) = E Z(y,- - <W2W1,X,'>)2
i=1

W2, Wy

MovieLens-10M Dataset
@ Collaborative filtering: 10M ratings for 11K movies by 72K users
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Dropout in Matrix Sensing

@ Goal: recover W, € R2*% from n linear measurements y; = (X;, W..)
@ Minimize squared loss in the factored form (W, € R%2X% W, ¢ R X%):
n

.op 1
min L(W,, W1) := - Z(Yi — (WaWy, X))?

W2, Wi Py

MovieLens-10M Dataset

@ Without explicit regularization, SGD suffers from gross overfitting

@ Dropout consistently outperforms even with an early stopping oracle

plain SGD dropout
width } last iterate | best iterate | p=02]| p=03| p=04
m =30 0.8041 0.7938 0.785
m=70 0.8315 0.7897 0.7899 0.7771
m = 110 0.8431 0.7873 0.7988 0.7813
m = 150 0.8472 0.7858 0.8042 0.7852
m = 190 0.8473 0.7844 0.8069 0.7879
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Dropout in Matrix Sensing

@ Goal: recover W, € R2*% from n linear measurements y; = (X;, W..)

@ Minimize squared loss in the factored form (W, € R%2X% W, ¢ R4 *%):

Wn;,IVQfl L(Wz, Wi) Z(y, (W2 Wy, Xi>)2
dropout objective = L(Ws, Wl) + dropout regularizer
Theorem (Explicit Form and Capacity Control)
Xi indicator matrix ~ P(row = i, col = j) = P(row = i)P(col = j) = p(i)q(j).

dropout regularizer o || diag(+/p) Wa Wi diag(+/§)||

With probability 1 — § over the random draw of a sample of size n, the dropout rule
output with dropout regularizer < a/di has generalization gap bounded as:

ads log(d2) + log(1/6)

generalization gap < \/
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2-layer RelLU Nets

@ 2-layer ReLU nets, single ouput d» = 1, computing f(x; W2, W1) = Wao(Wix).
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2-layer RelLU Nets

@ 2-layer ReLU nets, single ouput d» = 1, computing f(x; W2, W1) = Wao(Wix).

@ Class of networks with bounded dropout regularizer

H, = {f(-;w), dropout regularizer < r}
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2-layer RelLU Nets

@ 2-layer ReLU nets, single ouput d» = 1, computing f(x; W2, W1) = Wao(Wix).

@ Class of networks with bounded dropout regularizer
H, = {f(-;w), dropout regularizer < r}

@ J-retentiveness: for any non-zero vector v, it holds that Eo(v'x)? > BE(v ' x)?
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2-layer RelLU Nets

@ 2-layer ReLU nets, single ouput d» = 1, computing f(x; W2, W1) = Wao(Wix).

@ Class of networks with bounded dropout regularizer
H, = {f(-;w), dropout regularizer < r}

@ J-retentiveness: for any non-zero vector v, it holds that Eo(v'x)? > BE(v ' x)?

Theorem (Rademacher complexity - Upperbound)

For any sample S of size n, Rs(H,) < 27\/"’17:%‘”01'
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2-layer RelLU Nets

@ 2-layer ReLU nets, single ouput d» = 1, computing f(x; W2, W1) = Wao(Wix).

@ Class of networks with bounded dropout regularizer
H, = {f(-;w), dropout regularizer < r}

@ J-retentiveness: for any non-zero vector v, it holds that Eo(v'x)? > BE(v ' x)?

Theorem (Rademacher complexity - Upperbound)

For any sample S of size n, Rs(H,) < 27\/‘1’17:%(”&'

Theorem (Rademacher complexity - Lowerbound)

. Virl| X
There is a constant c such that for any r>0, Rs(H,)> %
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Empirical Results

@ MNIST dataset of handwritten digits, extract two classes {4,7}

@ The trained networks achieve %100 training accuracy
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Thanks for your attention!
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