Dropout: Explicit Forms and Capacity Control

Raman Arora, Peter Bartlett, Poorya Mianjy, Nati Srebro

ICML

A B A A B A

Introduction

• Algorithmic regularization techniques endow deep learning systems with reach inductive bias that helps them generalize.

Introduction

- Algorithmic regularization techniques endow deep learning systems with reach inductive bias that helps them generalize.
- We focus on dropout [Hinton et al., 2012], which is one of the most popular regularization techniques in today's practice of deep learning.

Introduction

- Algorithmic regularization techniques endow deep learning systems with reach inductive bias that helps them generalize.
- We focus on dropout [Hinton et al., 2012], which is one of the most popular regularization techniques in today's practice of deep learning.
- In particular, for matrix sensing and two-layer ReLU networks,
 - ▶ We analyze the *explicit forms* of the regularizer induced by dropout,
 - We demonstrate the *capacity control* due to dropout, by providing precise generalization error bounds.

Dropout in Matrix Sensing

- Goal: recover $W_* \in \mathbb{R}^{d_2 \times d_0}$ from *n* linear measurements $y_i = \langle X_i, W_* \rangle$
- Minimize squared loss in the factored form $(W_2 \in \mathbb{R}^{d_2 \times d_1}, W_1 \in \mathbb{R}^{d_1 \times d_0})$:

$$\min_{\mathrm{W}_2,\mathrm{W}_1} \hat{L}(\mathrm{W}_2,\mathrm{W}_1) := \frac{1}{n} \sum_{i=1}^n (y_i - \langle \mathrm{W}_2\mathrm{W}_1,\mathrm{X}_i\rangle)^2$$

MovieLens-10*M* Dataset

• Collaborative filtering: 10M ratings for 11K movies by 72K users

э

イロト イポト イヨト イヨト

Dropout in Matrix Sensing

- Goal: recover $W_* \in \mathbb{R}^{d_2 \times d_0}$ from *n* linear measurements $y_i = \langle X_i, W_* \rangle$
- Minimize squared loss in the factored form $(W_2 \in \mathbb{R}^{d_2 \times d_1}, W_1 \in \mathbb{R}^{d_1 \times d_0})$:

$$\min_{\mathrm{W}_2,\mathrm{W}_1} \hat{L}(\mathrm{W}_2,\mathrm{W}_1) := \frac{1}{n} \sum_{i=1}^n (y_i - \langle \mathrm{W}_2\mathrm{W}_1,\mathrm{X}_i\rangle)^2$$

MovieLens-10*M* Dataset

- Without explicit regularization, SGD suffers from gross overfitting
- Dropout consistently outperforms even with an early stopping oracle

	plain SGD		dropout			
width	last iterate	best iterate	p = 0.1	p = 0.2	<i>p</i> = 0.3	<i>p</i> = 0.4
<i>m</i> = 30	0.8041	0.7938	0.7805	0.785	0.7991	0.8186
<i>m</i> = 70	0.8315	0.7897	0.7899	0.7771	0.7763	0.7833
m = 110	0.8431	0.7873	0.7988	0.7813	0.7742	0.7743
m = 150	0.8472	0.7858	0.8042	0.7852	0.7756	0.7722
<i>m</i> = 190	0.8473	0.7844	0.8069	0.7879	0.7772	0.772

(日)

Dropout in Matrix Sensing

• Goal: recover $W_* \in \mathbb{R}^{d_2 \times d_0}$ from *n* linear measurements $y_i = \langle X_i, W_* \rangle$

• Minimize squared loss in the factored form $(W_2 \in \mathbb{R}^{d_2 \times d_1}, W_1 \in \mathbb{R}^{d_1 \times d_0})$:

$$\min_{\mathbf{W}_2,\mathbf{W}_1} \hat{\mathcal{L}}(\mathbf{W}_2,\mathbf{W}_1) := \frac{1}{n} \sum_{i=1}^n (y_i - \langle \mathbf{W}_2\mathbf{W}_1,\mathbf{X}_i \rangle)^2$$

dropout objective = $\hat{L}(W_2, W_1) + dropout regularizer$

Theorem (Explicit Form and Capacity Control)

 X_i indicator matrix $\sim \mathbb{P}(row = i, col = j) = \mathbb{P}(row = i)\mathbb{P}(col = j) = p(i)q(j)$.

dropout regularizer $\propto \|\operatorname{diag}(\sqrt{\hat{p}}) W_2 W_1 \operatorname{diag}(\sqrt{\hat{q}})\|_*^2$

With probability $1 - \delta$ over the random draw of a sample of size n, the dropout rule output with dropout regularizer $\leq \alpha/d_1$ has generalization gap bounded as:

generalization gap
$$\lesssim \sqrt{rac{lpha d_2 \log(d_2) + \log(1/\delta)}{n}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• 2-layer ReLU nets, single ouput $d_2 = 1$, computing $f(x; W_2, W_1) = W_2 \sigma(W_1 x)$.

э

< □ > < 同 > < 回 > < 回 > < 回 >

- 2-layer ReLU nets, single ouput d₂ = 1, computing f(x; W₂, W₁) = W₂σ(W₁x).
- Class of networks with bounded dropout regularizer

 $\mathcal{H}_r := \{f(\cdot; \mathbf{w}), \text{ dropout regularizer } \leq r\}$

3

- 2-layer ReLU nets, single ouput d₂ = 1, computing f(x; W₂, W₁) = W₂σ(W₁x).
- Class of networks with bounded dropout regularizer

 $\mathcal{H}_r := \{f(\cdot; w), \text{ dropout regularizer} \leq r\}$

• β -retentiveness: for any non-zero vector v, it holds that $\mathbb{E}\sigma(v^{\top}x)^2 \geq \beta \mathbb{E}(v^{\top}x)^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2-layer ReLU nets, single ouput d₂ = 1, computing f(x; W₂, W₁) = W₂σ(W₁x).
- Class of networks with bounded dropout regularizer

$$\mathcal{H}_r := \{f(\cdot; \mathbf{w}), \text{ dropout regularizer} \leq r\}$$

• β -retentiveness: for any non-zero vector v, it holds that $\mathbb{E}\sigma(v^{\top}x)^2 \geq \beta \mathbb{E}(v^{\top}x)^2$

Theorem (Rademacher complexity - Upperbound)

For any sample S of size n, $\Re_{\mathcal{S}}(\mathcal{H}_r) \leq \frac{2\sqrt{d_1r} \|X\|_{C^{\dagger}}}{n\sqrt{\beta}}$.

- 2-layer ReLU nets, single ouput d₂ = 1, computing f(x; W₂, W₁) = W₂σ(W₁x).
- Class of networks with bounded dropout regularizer

$$\mathcal{H}_r := \{f(\cdot; \mathbf{w}), \text{ dropout regularizer } \leq r\}$$

• β -retentiveness: for any non-zero vector v, it holds that $\mathbb{E}\sigma(v^{\top}x)^2 \geq \beta \mathbb{E}(v^{\top}x)^2$

Theorem (Rademacher complexity - Upperbound)

For any sample S of size n, $\Re_{\mathcal{S}}(\mathcal{H}_r) \leq \frac{2\sqrt{d_1r}\|X\|_{C^{\dagger}}}{n\sqrt{\beta}}$.

Theorem (Rademacher complexity - Lowerbound)

There is a constant c such that for any r > 0, $\Re_{\mathcal{S}}(\mathcal{H}_r) \ge \frac{c\sqrt{d_1 r ||X||}_{C^{\dagger}}}{n}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical Results

- MNIST dataset of handwritten digits, extract two classes {4,7}
- The trained networks achieve %100 training accuracy

- 4 ∃ ▶

- ∢ ∃ →

Thanks for your attention!

- 4 回 ト - 4 回 ト