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Stochastic optimization

Stochastic optimization problem:

minimize
x∈X

f (x) := EP [f (x;S)] =
∫
S

f (x; s)dP(s)

Often solved by gradient-based methods using i.i.d. samples drawn from P

SGD: xk+1 = xk − αkgk, gk ∈ ∂f (xk,Sk)

Countless variants: momentum, adaptive schemes, averaging,…

Many known problems
• sensitive to algorithm parameters → costly parameter-tuning
• unbounded iterates when f grows quickly
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Instability of SGD and relatives

Convergence proofs rely on Lipschitz continuous or bounded gradients

f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2
‖y − x‖2

2

→ f must grow slower than a quadratic everywhere

Example. Let f (x) = x4/4 + εx2/2, consider SGD with αk = α1/k:

xk+1 = xk − α1

k
(
x3

k + εxk
)
.

Then, if x1 ≥
√

3/α1, it holds for any k ≥ 1 that

|xk| ≥ |x1| k!.

Super-exponential divergence even in the noiseless setting
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Stochastic gradient clipping

Clipping operator

clipγ : x 7→ min

{
1, γ

‖x‖2

}
x

Gradient clipping:
• widely used in training models prone to exploding gradients
• introduces nontrivial bias

Contributions: effectiveness of gradient clipping in two regimes
• stability and convergence results for rapidly growing convex functions
• sample complexity for weakly convex functions
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Outline

• Background and motivation
• Stability and convergence for fast growing convex functions
• Sample complexity for stochastic weakly convex minimization
• Numerical examples
• Summary and conclusions
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Problem and algorithm: the convex case

Problem:

minimize
x∈Rn

f (x) := EP [f (x;S)] =
∫
S

f (x; s)dP(s)

Clipped SGD:

xk+1 = xk − αkdk, dk = clipγk

(
1

mk

mk∑
i=1

f ′(xk,S i
k)

)
.

• mk is the mini-batch size
• f ′(xk,S i

k) is a stochastic (sub)gradient

Q: Is clipped SGD any better than standard SGD?
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Stability

Assumption. There exists µ > 0 such that such that for all x:

f (x)− f (x?) ≥ µdist (x,X ?)
2
.

Stability: With gradient variance σ2 and clipping threshold γ, then

E[dist (xk,X ?)
2
] ≤ dist (x0,X ?)

2
+ (σ2/(2µ) + γ2)

k−1∑
i=0

αi

→ will not diverge faster than the sum of used stepsizes

Example: For αi = O(1/i), we have
∑k−1

i=0 αi = log(k).

→core building block for all the subsequent convergence guarantees
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Arbitrary growth

Assumption. There exits an increasing function Gbig : R+ → [0,∞):

E[‖f ′(x,S)‖2
2] ≤ Gbig(dist (x,X ?)), ∀x.

• gradients can grow arbitrarily
• only the proximal point method has known asymptotic convergence

We show clipped SGD with mini-batching converges in this case.
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First convergence results

Key estimate. Let %k := min {1, γk/ ‖gk‖2} and ek = dist (xk,X ?), then

E
[
e2

k+1
∣∣Fk
]
≤
(
1 − µαkE

[
%k
∣∣Fk
])

e2
k +

σ2αk

µmk
+ α2

kγ
2.

Asymptotic convergence. Suppose
∑∞

k=0 αk/mk < ∞, then

dist (xk,X ?)
a.s.−→ 0.

Finite convergence. Let αk = α0K−τ with τ ∈ (1/2, 1), and fix δ ∈ (0, 1):

dist (xK ,X ?)
2 ≤ O

(
1

δKτ

)
, w.p. at least 1 − 3δ.
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Polynomial growth

Assumption. There exist L0,L1, σ ≥ 0 and 2 ≤ p < ∞ such that

E
[
‖f ′(x,S)‖2

2

]
≤ L0 + L1 dist (x,X ?)

2(p−1)
.

Convexity of f implies

f (x)− f (x?) ≤
√

L0 dist (x,X ?) +
√

L1 dist (x,X ?)
p
.

Example: f (x) = x4/4 + εx2/2 has L0 = L1 = 2(1 + ε) and p = 4.

We establish near-optimal rate without the need for mini-batching.
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Second convergence results

Key observation. Let αk = α0k−τ with τ ∈ (1/2, 1) and γk = γ√
αk

, then

E
[
‖f ′(xk,S)‖

2
2

]
≤ G0 + G1k(p−1)(1−τ).

→ gradient at xk grows at appropriate rate

Theorem. Let τ = 1 − ε for some ε > 0, then

E[dist (xk,X ?)
2
] ≤ C

µα0

1
k1+ε(1−2p) + o

(
1

k1+ε(1−2p)

)
.

Recall: optimal rate for Lipschitz continuous f with τ = 1 is O
( 1
µk
)
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Summary results for convex functions

Clipping is effective for fast growing convex functions
• much more stable than SGD
• convergence results under arbitrary growth with mini-batching
• near optimal rate for polynomial growth

What if the function grows slowly?
• clipping introduces nontrivial bias → might harm convergence
• non-convexity?
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Weakly convex minimization and algorithm

Problem:

minimize
x∈X

f (x) := EP [f (x;S)] =
∫
S

f (x; s)dP(s)

f is ρ-weakly convex, meaning that

x 7→ f (x) + ρ

2
‖x‖2

2 is convex.

Algorithm: Consider a momentum extension
xk+1 = xk − αkdk

dk+1 = clipγ ((1 − βk)dk + βkgk+1) .

Recovers SHB when γ = ∞; setting β = 1 gives clipped SGD

Goal: establish sample complexity
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Roadmap and challenges

Most complexity results for subgradient-based methods rely on forming:

E[Vk+1] ≤ E[Vk]− αk E[ek] + α2
kC2

Immediately yields O(1/ε2) complexity for E[ek]

Stationarity measure:
• f convex =⇒ ek = f (xk)− f (x?)

• f smooth =⇒ ek = ‖∇f (xk)‖2
2

Lyapunov analysis (for SGD):

• f convex =⇒ Vk = ‖xk − x?‖2
2 [Shor, 1964]

• f smooth =⇒ Vk = f (xk) [Ghadimi-Lan, 2013]

Not clear what to measure in non-smooth and non-convex case
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Convergence to stationarity in weakly convex cases

Moreau envelope

Fλ(x)= inf
y∈Rn

{
f (y) + 1

2λ
‖x − y‖2

2

}
Proximal point

x̂ := argmin
y∈Rn

{
f (y) + 1

2λ
‖x − y‖2

2
}
.

Connection to near-stationarity‖x − x̂‖2 = λ ‖∇fλ(x)‖2

dist(0, ∂f (x̂)) ≤ ‖∇fλ(x)‖2

Small ‖∇fλ(x)‖2 =⇒ x close to a near-stationary point
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Lyapunov analysis for clipped SHB

Recall that we wanted

E[Vk+1] ≤ E[Vk]− αk E[ek] + α2
kC2,

where we chose ek = ‖∇fλ(xk)‖2
2.

Key insight. Viewing dk as an estimate for ∇fλ(xk) leads to:

Wk =
1
2ν

‖dk −∇fλ(xk)‖2
2 −

1
2ν

‖∇fλ(xk)‖2
2 + f (xk).

We can then construct the Lyapunov function as:

Vk = fλ(xk) + Wk +
f (xk)

λν
+

(
1 − βk

2λν2 +
αk

λν

)
‖dk‖2

2 .

→ immediately yields E
[ ∥∥∇f1/(2ρ)(x̄k)

∥∥2
2

]
≤ O(1/

√
K)
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Experiments: sensitivity to initial stepsize on phase retrieval
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(a) 1 − β = 0.9, ε = 0.1
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(b) 1 − β = 0.9, ε = 0.25

Figure: #epochs to achieve ε-accuracy vs. initial stepsize α0 for phase retrieval.
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Experiments: convergence behavior on phase retrieval
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(a) α0 = 0.139
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(b) α0 = 0.268
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(c) α0 = 0.518
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(d) α0 = 1.0
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Experiments: neural networks
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Figure: #epochs to achieve ε test accuracy vs. initial stepsize α0 for CIFAR10
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Conclusion

Stochastic gradient clipping
• simple modifications to SGD
• good performance and less sensitive to algorithm parameters

Fast growing convex functions
• various qualitative and quantitative convergence results

Novel Lyapunov analysis
• sample complexity of clipped SHB for weakly convex minimization
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