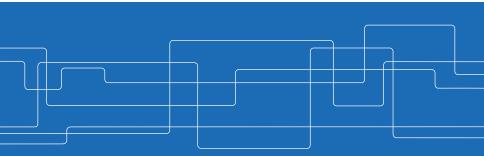


Stability and Convergence of Stochastic Gradient Clipping

Vien V. Mai and Mikael Johansson

KTH - Royal Institute of Technology



Stochastic optimization

Stochastic optimization problem:

$$\underset{x \in \mathcal{X}}{\text{minimize } f(x)} := \mathbb{E}_{P}[f(x; S)] = \int_{\mathcal{S}} f(x; s) dP(s)$$

Often solved by gradient-based methods using i.i.d. samples drawn from ${\it P}$

SGD:
$$x_{k+1} = x_k - \alpha_k g_k, \qquad g_k \in \partial f(x_k, S_k)$$

Countless variants: momentum, adaptive schemes, averaging,...

Many known problems

- sensitive to algorithm parameters \rightarrow costly parameter-tuning
- **unbounded** iterates when f grows quickly

Instability of SGD and relatives

Convergence proofs rely on Lipschitz continuous or bounded gradients

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||_2^2$$

 $\rightarrow f$ must grow slower than a quadratic everywhere

Example. Let $f(x) = x^4/4 + \epsilon x^2/2$, consider SGD with $\alpha_k = \alpha_1/k$:

$$x_{k+1} = x_k - \frac{\alpha_1}{k} \left(x_k^3 + \epsilon x_k \right).$$

Then, if $x_1 \geq \sqrt{3/\alpha_1},$ it holds for any $k \geq 1$ that

 $|x_k| \geq |x_1| \, k!.$

Super-exponential divergence even in the noiseless setting

Stochastic gradient clipping

Clipping operator

$$\operatorname{clip}_{\gamma}: x \mapsto \min\left\{1, \frac{\gamma}{\|x\|_2}\right\} x$$

Gradient clipping:

- widely used in training models prone to exploding gradients
- introduces nontrivial bias

Contributions: effectiveness of gradient clipping in two regimes

- stability and convergence results for rapidly growing convex functions
- sample complexity for weakly convex functions

Outline

- Background and motivation
- Stability and convergence for fast growing convex functions
- Sample complexity for stochastic weakly convex minimization
- Numerical examples
- Summary and conclusions

Problem:

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} f(x) := \mathbb{E}_P[f(x; S)] = \int_{\mathcal{S}} f(x; s) dP(s)$$

Clipped SGD:

$$x_{k+1} = x_k - \alpha_k d_k, \quad d_k = \operatorname{clip}_{\gamma_k} \left(\frac{1}{m_k} \sum_{i=1}^{m_k} f'(x_k, S_k^i) \right).$$

- m_k is the mini-batch size
- $f'(x_k, S_k^i)$ is a stochastic (sub)gradient

Q: Is clipped SGD any better than standard SGD?

Stability

Assumption. There exists $\mu > 0$ such that such that for all x:

$$f(x) - f(x^*) \ge \mu \operatorname{dist} (x, \mathcal{X}^*)^2$$
.

Stability: With gradient variance σ^2 and clipping threshold γ , then

$$\mathbb{E}[\operatorname{dist}(x_k, \mathcal{X}^{\star})^2] \leq \operatorname{dist}(x_0, \mathcal{X}^{\star})^2 + (\sigma^2/(2\mu) + \gamma^2) \sum_{i=0}^{k-1} \alpha_i$$

 \rightarrow will not diverge faster than the sum of used stepsizes

Example: For
$$\alpha_i = O(1/i)$$
, we have $\sum_{i=0}^{k-1} \alpha_i = \log(k)$.

 \rightarrow core building block for all the subsequent convergence guarantees

Assumption. There exits an increasing function $G_{\text{big}}: \mathbb{R}_+ \to [0,\infty)$:

$$\mathbb{E}[\|f'(x,S)\|_{2}^{2}] \leq G_{\text{big}}(\text{dist}(x,\mathcal{X}^{\star})), \quad \forall x.$$

- gradients can grow arbitrarily
- only the proximal point method has known asymptotic convergence

We show clipped SGD with mini-batching converges in this case.

First convergence results

Key estimate. Let $\varrho_k := \min \{1, \gamma_k / \|g_k\|_2\}$ and $e_k = \operatorname{dist}(x_k, \mathcal{X}^{\star})$, then

$$\mathbb{E}\left[e_{k+1}^{2}\big|\mathcal{F}_{k}\right] \leq \left(1-\mu\alpha_{k}\mathbb{E}\left[\varrho_{k}\big|\mathcal{F}_{k}\right]\right)e_{k}^{2}+\frac{\sigma^{2}\alpha_{k}}{\mu m_{k}}+\alpha_{k}^{2}\gamma^{2}.$$

Asymptotic convergence. Suppose $\sum_{k=0}^{\infty} \alpha_k/m_k < \infty$, then

dist $(x_k, \mathcal{X}^{\star}) \xrightarrow{a.s.} 0.$

Finite convergence. Let $\alpha_k = \alpha_0 K^{-\tau}$ with $\tau \in (1/2, 1)$, and fix $\delta \in (0, 1)$:

dist
$$(x_K, \mathcal{X}^{\star})^2 \leq O\left(\frac{1}{\delta K^{\tau}}\right)$$
, w.p. at least $1 - 3\delta$.

Polynomial growth

Assumption. There exist $L_0, L_1, \sigma \geq 0$ and $2 \leq p < \infty$ such that

$$\mathbb{E}\left[\left\|f'(x,S)\right\|_{2}^{2}\right] \leq L_{0} + L_{1} \operatorname{dist}(x,\mathcal{X}^{\star})^{2(p-1)}.$$

Convexity of f implies

$$f(x) - f(x^{\star}) \le \sqrt{L_0} \operatorname{dist} (x, \mathcal{X}^{\star}) + \sqrt{L_1} \operatorname{dist} (x, \mathcal{X}^{\star})^p.$$

Example: $f(x) = x^4/4 + \epsilon x^2/2$ has $L_0 = L_1 = 2(1 + \epsilon)$ and p = 4.

We establish near-optimal rate without the need for mini-batching.

Second convergence results

Key observation. Let $\alpha_k = \alpha_0 k^{-\tau}$ with $\tau \in (1/2, 1)$ and $\gamma_k = \frac{\gamma}{\sqrt{\alpha_k}}$, then

$$\mathbb{E}\left[\left\|f'(x_k, S)\right\|_2^2\right] \le G_0 + G_1 k^{(p-1)(1-\tau)}.$$

 \rightarrow gradient at x_k grows at appropriate rate

Theorem. Let $\tau = 1 - \epsilon$ for some $\epsilon > 0$, then

$$\mathbb{E}[\operatorname{dist}(x_k, \mathcal{X}^{\star})^2] \leq \frac{C}{\mu\alpha_0} \frac{1}{k^{1+\epsilon(1-2p)}} + o\left(\frac{1}{k^{1+\epsilon(1-2p)}}\right).$$

Recall: optimal rate for Lipschitz continuous f with $\tau = 1$ is $O(\frac{1}{\mu k})$

Clipping is effective for fast growing convex functions

- much more stable than SGD
- convergence results under arbitrary growth with mini-batching
- near optimal rate for polynomial growth

What if the function grows slowly?

- clipping introduces nontrivial bias \rightarrow might harm convergence
- non-convexity?

Problem:

$$\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x) := \mathbb{E}_{P}[f(x; S)] = \int_{\mathcal{S}} f(x; s) dP(s)$$

f is $\rho\text{-weakly convex, meaning that}$

$$x \mapsto f(x) + \frac{\rho}{2} \left\| x \right\|_2^2$$
 is convex.

Algorithm: Consider a momentum extension

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k d_k \\ d_{k+1} &= \operatorname{clip}_{\gamma} \left((1 - \beta_k) d_k + \beta_k g_{k+1} \right). \end{aligned}$$

Recovers SHB when $\gamma = \infty$; setting $\beta = 1$ gives clipped SGD

Goal: establish sample complexity

Roadmap and challenges

Most complexity results for subgradient-based methods rely on forming:

```
\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] - \frac{\alpha_k}{\alpha_k} \mathbb{E}[e_k] + \frac{\alpha_k^2 C^2}{\alpha_k^2} C^2
```

Immediately yields $O(1/\epsilon^2)$ complexity for $\mathbb{E}[e_k]$

Stationarity measure:

•
$$f \text{ convex} \Longrightarrow e_k = f(x_k) - f(x^*)$$

• $f \text{ smooth} \implies e_k = \|\nabla f(x_k)\|_2^2$

Lyapunov analysis (for SGD):

•
$$f \text{ convex} \implies V_k = \|x_k - x^\star\|_2^2$$

•
$$f \text{ smooth} \implies V_k = f(x_k)$$

Not clear what to measure in non-smooth and non-convex case

[[]Shor, 1964] [Ghadimi-Lan, 2013]

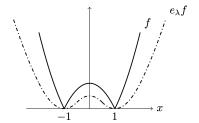
Convergence to stationarity in weakly convex cases

Moreau envelope

$$F_{\lambda}(x) = \inf_{y \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|_2^2 \right\}$$

Proximal point

$$\hat{x} := \operatorname*{argmin}_{y \in \mathbb{R}^n} \{ f(y) + \frac{1}{2\lambda} \|x - y\|_2^2 \}.$$



Connection to near-stationarity

$$\begin{cases} \|x - \hat{x}\|_2 = \lambda \|\nabla f_\lambda(x)\|_2 \\ \operatorname{dist}(0, \partial f(\hat{x})) \le \|\nabla f_\lambda(x)\|_2 \end{cases}$$

Small $\| \nabla f_{\lambda}(x) \|_2 \Longrightarrow x$ close to a near-stationary point

Recall that we wanted

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] - \alpha_k \mathbb{E}[e_k] + \alpha_k^2 C^2,$$

where we chose $e_k = \|\nabla f_\lambda(x_k)\|_2^2$.

Key insight. Viewing d_k as an estimate for $\nabla f_\lambda(x_k)$ leads to:

$$W_{k} = \frac{1}{2\nu} \|d_{k} - \nabla f_{\lambda}(x_{k})\|_{2}^{2} - \frac{1}{2\nu} \|\nabla f_{\lambda}(x_{k})\|_{2}^{2} + f(x_{k}).$$

We can then construct the Lyapunov function as:

$$V_k = f_{\lambda}(x_k) + W_k + \frac{f(x_k)}{\lambda\nu} + \left(\frac{1-\beta_k}{2\lambda\nu^2} + \frac{\alpha_k}{\lambda\nu}\right) \|d_k\|_2^2.$$

 \rightarrow immediately yields $\mathbb{E}\big[\left\|\nabla f_{1/(2\rho)}(\bar{x}_k)\right\|_2^2\big] \leq \mathit{O}(1/\sqrt{K})$

Experiments: sensitivity to initial stepsize on phase retrieval

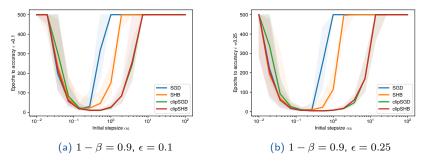
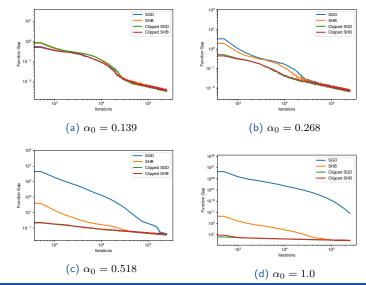


Figure: #epochs to achieve ϵ -accuracy vs. initial stepsize α_0 for phase retrieval.

Experiments: convergence behavior on phase retrieval



V. V. Mai (KTH)

ICML-2021

Experiments: neural networks

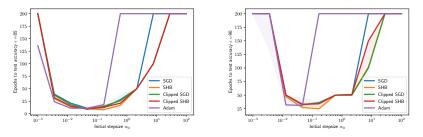


Figure: #epochs to achieve ϵ test accuracy vs. initial stepsize α_0 for CIFAR10

Conclusion

Stochastic gradient clipping

- simple modifications to SGD
- good performance and less sensitive to algorithm parameters

Fast growing convex functions

• various qualitative and quantitative convergence results

Novel Lyapunov analysis

• sample complexity of clipped SHB for weakly convex minimization