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Stochastic optimization

Stochastic optimization problem:

minimize f(z) := Ep[f(z; 5)] = /Sf(:zz, s)dP(s)

TEX
Often solved by gradient-based methods using i.i.d. samples drawn from P
SGD: w1 =2k — arges gk € Of (zk, Sk)
Countless variants: momentum, adaptive schemes, averaging, ...

Many known problems
e sensitive to algorithm parameters — costly parameter-tuning

e unbounded iterates when f grows quickly
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Instability of SGD and relatives

Convergence proofs rely on Lipschitz continuous or bounded gradients

£(9) < F(@)+ (V7). — ) + ¢ lly — ol

— f must grow slower than a quadratic everywhere

Example. Let f(z) = 2*/4 + e2?/2, consider SGD with oy, = oy /k:

Tpt1 = Tpp — % (x,f + emk) .

Then, if 21 > /3/a1, it holds for any k£ > 1 that
|zg| > |21 ] K.
Super-exponential divergence even in the noiseless setting
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Stochastic gradient clipping

Clipping operator

clip, : z — min {1, ’Y} x
[E4(P

Gradient clipping:
e widely used in training models prone to exploding gradients
e introduces nontrivial bias

Contributions: effectiveness of gradient clipping in two regimes

e stability and convergence results for rapidly growing convex functions

e sample complexity for weakly convex functions
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Stability and convergence for fast growing convex functions

Sample complexity for stochastic weakly convex minimization

Numerical examples

e Summary and conclusions
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Problem and algorithm: the convex case

Problem:

minimize f(z) := Ep[f(z; 5)] = /Sf(x, s)dP(s)

zER™

Clipped SGD:

RS ;
Tht1 = Tp — agdy,  dj = clip,, <ﬁZf’(Ik, 512)) :
=1

e 1y, is the mini-batch size
e f'(ax, Si) is a stochastic (sub)gradient

Q: Is clipped SGD any better than standard SGD?
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Stability

Assumption. There exists y > 0 such that such that for all z:
f(@) = f(a*) = pdist (2, X%)° .
Stability: With gradient variance o2 and clipping threshold +, then

k—1
Eldist (a, X*)2] < dist (20, &%) + (07/(2) + 7)Y s
=0

— will not diverge faster than the sum of used stepsizes

Example: For a; = O(1/1), we have Zf:_ol a; = log(k).

—core building block for all the subsequent convergence guarantees
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Arbitrary growth

Assumption. There exits an increasing function Ghig : Ry — [0, 00):
E[|lf'(z, 8) 5] < Ghig(dist (z, X7)),  Va.

e gradients can grow arbitrarily

e only the proximal point method has known asymptotic convergence

We show clipped SGD with mini-batching converges in this case.
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First convergence results

Key estimate. Let g := min{1,v;/ | gxll,} and e, = dist (25, X*), then

02041C

E [€]Fi] < (1= peulE [on| Fi]) ek + + a2y’

pmy

Asymptotic convergence. Suppose Y-, o/ my, < 0o, then

dist (zg, X*) 250.

Finite convergence. Let o, = agK 7 with 7 € (1/2,1), and fix ¢ € (0, 1):

1
OKT™

dist (:vK,X*)2 < O( > . w.p. at least 1 — 34.
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Polynomial growth

Assumption. There exist Ly, L1, 0 > 0 and 2 < p < oo such that
E [IIf/(z, $)l3] < Lo + Ly dist (z, &>,

Convexity of f implies

f(z) — f(z%) < \/Lodist (z, X*) + /Ly dist (z, X*)".
Example: f(z) = 2*/4 +ex?/2 has Lo = L1 =2(1+¢) and p = 4.

We establish near-optimal rate without the need for mini-batching.

V. V. Mai (KTH) ICML-2021 10 / 20



Second convergence results

Key observation. Let o, = agk™" with 7 € (1/2,1) and 75 = \/%7 then

£ [”f'(ﬂ?kas)lli] < Go + Gk~ 0=,
— gradient at z, grows at appropriate rate

Theorem. Let 7 = 1 — ¢ for some € > 0, then

C 1 1
. 2
Eldist (z, X*)7] < Loy FATe(-2p) To <k1+e(12p)) '

Recall: optimal rate for Lipschitz continuous f with 7 =1 is O(ﬁ)
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Summary results for convex functions

Clipping is effective for fast growing convex functions
e much more stable than SGD
e convergence results under arbitrary growth with mini-batching

e near optimal rate for polynomial growth

What if the function grows slowly?
e clipping introduces nontrivial bias — might harm convergence

® non-convexity?
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Weakly convex minimization and algorithm

Problem:
winimize f(z) 1= Eplf(a: 5) = [ flazs)aP(s)
f is p-weakly convex, meaning that
z— f(z) + g ||x||§ is convex.

Algorithm: Consider a momentum extension

Tpt1 = T — pdy
d1 = clipy, ((1 — Br)di + Brgr+1) -

Recovers SHB when v = oo; setting 8 = 1 gives clipped SGD

Goal: establish sample complexity
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Roadmap and challenges

Most complexity results for subgradient-based methods rely on forming;:
E[Vii1] < E[Vi] — o Elex] + af C?
Immediately yields O(1/e?) complexity for E[ey]

Stationarity measure:

o f convex = e, = f(xx) — f(z¥)
e f smooth = ¢, = ||Vf(mk)||§
Lyapunov analysis (for SGD):

o fconvex = Vi = ||ax — x*Hg [Shor, 1964]
e fsmooth = Vj, = f(ay) [Ghadimi-Lan, 2013]

Not clear what to measure in non-smooth and non-convex case
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Convergence to stationarity in weakly convex cases

Moreau envelope

Fa(e)= inf {7() + 5 o= vl }

yER™

Proximal point

N . 1
& = argmin {f(y) + 55 |z —yll3 }-
yeR?

Connection to near-stationarity

[z = 2ll, = MV
dist(0,9f(2)) < [VA(2)l,

Small ||Vfr(z)|l, = = close to a near-stationary point
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Lyapunov analysis for clipped SHB

Recall that we wanted
E[Vii1] < E[Vi] — ai E[ex] + ai C?,
where we chose e, = ||Vf,\(1k)||§
Key insight. Viewing dj; as an estimate for Vf)(zy) leads to:
Wi= oo lld = VAGIE - 5 IVAGIE +fa).
2v 2v

We can then construct the Lyapunov function as:

_ ED) 1-B | ag 2
Vi = fa(o) + Wi + v T louz Ty Il dll5 -

— immediately yields E[ ||V fi (2, (@)|3 ] < O(1/VE)
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Experiments: sensitivity to initial stepsize on phase retrieval

Epochs to accuracy ¢ =0.1

Figure: #epochs to achieve e-accuracy vs. initial stepsize o for phase retrieval.
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Experiments:
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Experiments: neural networks
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Figure: #epochs to achieve € test accuracy vs. initial stepsize a for CIFAR10
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Conclusion

Stochastic gradient clipping
e simple modifications to SGD

e good performance and less sensitive to algorithm parameters

Fast growing convex functions

e various qualitative and quantitative convergence results

Novel Lyapunov analysis

e sample complexity of clipped SHB for weakly convex minimization
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