Differentially Private Correlation Clustering

Mark Bun (Boston University)

Marek Eliáš (CWI, Amsterdam)

Janardhan Kulkarni (Microsoft Research, Redmond)

Clustering based on similarities (Bansal et al. '02):

Two related objectives:

- (A) minimize the number of disagreements (MinDis)
- (B) maximize the number of agreements (MaxAgr)

Differential Privacy

Standard model of privacy in Theoretical CS

· introduced by Dwork, McSherry, Nissim, Smith in 2006

Differential Privacy

Standard model of privacy in Theoretical CS

introduced by Dwork, McSherry, Nissim, Smith in 2006

Correlation Clustering with Edge-level privacy

- · good clustering based on private similarity information
- · which does not reveal the sign of any individual edge

Differential Privacy

Standard model of privacy in Theoretical CS

introduced by Dwork, McSherry, Nissim, Smith in 2006

Correlation Clustering with Edge-level privacy

- · good clustering based on private similarity information
- · which does not reveal the sign of any individual edge

Our results

Lower bound for paths on *n* vertices:

· additive error $\Omega(n)$ for any ϵ -DP mechanism

Our results

Lower bound for paths on *n* vertices:

• additive error $\Omega(n)$ for any ϵ -DP mechanism

DP mechanisms for Correlation Clustering of n objects:

• €-DP mechanism for MinDis unweighted complete graphs

$$Dis(ALG) \le 2.06 \cdot OPT + O(n^{1.75}/\epsilon)$$

· similar results for general graphs and MaxAgr objective

Our results

Lower bound for paths on *n* vertices:

• additive error $\Omega(n)$ for any ϵ -DP mechanism

DP mechanisms for Correlation Clustering of n objects:

• €-DP mechanism for MinDis unweighted complete graphs

$$Dis(ALG) \le 2.06 \cdot OPT + O(n^{1.75}/\epsilon)$$

- · similar results for general graphs and MaxAgr objective
- based on mechanisms for synthetic graph release:
 - · Gupta, Roth, Ullman '12; Eliáš, Kapralov, Kulkarni, Lee '20

Thank you for your attention!