
Variational Empowerment as Representation Learning
for Goal-based Reinforcement Learning

● Adaptive-variance GCRL (aGCRL) can prioritize goal-reaching in more controllable dimensions, 
similar to automatic relevance determination (ARD): e.g.,

● Linear-mapping GCRL: Recovering intrinsic dimensions of variations, e.g.,

● However, high expressivity may not necessarily mean be er pe ormance for latent space 
learning and representation learning: proper regularizations such as Spectral Normalizations 
(SN) can play an impo ant role for VE and VGCRL.

● Goal-Conditioned RL (GCRL): learn optimal policies that control some states to 
desired goal states

● Empowerment (VIC, DIAYN, DADS): by maximizing the mutual information (MI) 
between state and latent code (skill or goal), we can learn diverse skills or goal 
representations and reward functions for goal-reaching without reward

Our Contributions:
● We view variational MI as a principled framework for representation learning in 

goal-based RL, through an unifying perspective for GCRL and variational 
empowerment (VE) algorithms

● GCRL as Variational Empowerment:
○ We derive novel variants of GCRL such as adaptive variance and linear-mapping GCRL
○ We nd that regularization of the posterior is impo ant (e.g. spectral normalization)

● Variational Empowerment as GCRL:
○ We extend HER (Hindsight experience Replay) to Posterior HER for MI-based RL
○ We propose Latent Goal Reaching (LGR) metric for evaluating VE algorithms

Introduction

● The Barber-Agakov lower bound of MI:

● Jointly optimization w.r.t. policy and variational posterior (e.g., DIAYN, VISR):

● Key Observation: This objective encapsulates the standard GCRL, when a 
xed-variance Gaussian distribution                                         is used for the posterior:

● This provides a novel interpretation for GCRL as a variational empowerment algorithm 
with a hard-coded and xed variational distribution: by varying expressivity through 
the choice of            , we can interpolate between GCRL and variational empowerment

We can transfer some known techniques for GCRL to be er understand VE:

● Posterior HER for accelerating variational empowerment algorithms:
relabel the latent goal with an up-to-date estimate from
the variational posterior                   when training

● Latent Goal Reaching (LGR) Metric: evaluate MI-based RL
as just another goal-reaching problem given target states of interest
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