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Introduction GCRL as Variational Empowerment
e Goal-Conditioned RL (GCRL): learn optimal policies that control some states to e Adaptive-variance GCRL (aGCRL) can prioritize goal-reaching in more controllable dimensions,
desired goal states similar to automatic relevance determination (ARD): e.g., ¢ (z|s) = N (s, X)

e Empowerment (VIC, DIAYN, DADS): by maximizing the mutual information (M)
between state and latent code (skill or goal), we can learn diverse skills or goal
representations and reward functions for goal-reaching without reward
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Our Contributions:

e We view variational Ml as a principled framework for representation learning in
goal-based RL, through an unifying perspective for GCRL and variational
empowerment (VE) algorithms
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e GCRL as Variational Empowerment: e Linear-mapping GCRL: Recovering intrinsic dimensions of variations, e.g., q(z|o) = N (4o, %)

o We derive novel variants of GCRL such as adaptive variance and linear-mapping GCRL BRBW fttySical Shacs 51 OLSERadE Epacs ©: Goalishage eaTried ST o i
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Unification of GCRL and Variational Empowerment e However, high expressivity may not necessarily mean better performance for latent space

learning and representation learning: proper regularizations such as Spectral Normalizations

e The Barber-Agakov lower bound of MI:
(SN) can play an important role for VE and VGCRL.

I(S, Z) — H(Z) R H(Z 8) > %(Z) T {"Z,SNpg(z,S) [log QA(zls)]

e Jointly optimization w.r.t. policy and variational posterior (e.g., DIAYN, VISR):

Variational Empowerment as GCRL

We can transfer some known techniques for GCRL to better understand VE:

.F(H, )\) — ‘Ezwp(z),srvﬂ‘g [log Q)\(Z‘S)

e Key Observation: This objective encapsulates the standard GCRL, when a desired goal
fixed-variance Gaussian distribution gx(z|s) = N (z;s, o*I) is used for the posterior: e Posterior HER for accelerating variational empowerment algorithms: =

F(r) =E [ — Lz — 2] relabel the latent goal with an up-to-date estimate from :gfﬁ:ﬂg d goal
2~p(2),5~Te o? the variational posterior gx(z|sT) when training 7o (al|s, z) R 2 = S(sp)
e This provides a novel interpretation for GCRL as a variational empowerment algorithm o

e Latent Goal Reaching (LGR) Metric: evaluate Ml-based RL

with a hard-coded and fixed variational distribution: by varying expressivity through 2~ qr(z | sT)

. : _ as just another goal-reaching problem given target states of interest g
the choice of ¢(z|s), we can interpolate between GCRL and variational empowerment
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