Variational Empowerment as Representation Learning for Goal-based Reinforcement Learning

Honglak Lee Sergey Levine Shixiang (Shane) Gu Jongwook Choi Archit Sharma

Introduction

- Goal-Conditioned RL (GCRL): learn optimal policies that control some states to desired goal states
- **Empowerment** (VIC, DIAYN, DADS): by maximizing the mutual information (MI) between state and latent code (skill or goal), we can learn diverse skills or goal representations and reward functions for goal-reaching without reward

Our Contributions:

- We view variational MI as a principled framework for representation learning in goal-based RL, through an **unifying perspective** for GCRL and variational empowerment (VE) algorithms
- GCRL as Variational Empowerment:
 - We derive novel variants of GCRL such as adaptive variance and linear-mapping GCRL
 - We find that **regularization** of the posterior is important (e.g. spectral normalization)
- Variational Empowerment as GCRL:
 - We extend HER (Hindsight experience Replay) to **Posterior HER** for MI-based RL
 - We propose Latent Goal Reaching (LGR) metric for evaluating VE algorithms

Unification of GCRL and Variational Empowerment

• The Barber-Agakov lower bound of MI:

$$\mathcal{L}(s,z) = \mathcal{H}(z) - \mathcal{H}(z|s) \ge \mathcal{H}(z) + \mathbb{E}_{z,s \sim p_{\theta}^{\pi}(z,s)} \Big[\log q \Big]$$

• Jointly optimization w.r.t. policy and variational posterior (e.g., DIAYN, VISR):

$$\mathcal{F}(\theta,\lambda) = \mathbb{E}_{z \sim p(z), s \sim \pi_{\theta}} \left[\log q_{\lambda}(z|s) \right]$$

• Key Observation: This objective encapsulates the standard GCRL, when a fixed-variance Gaussian distribution $q_{\lambda}(z|s) = \mathcal{N}(z; s, \sigma^2 I)$ is used for the posterior:

$$F(\pi) = \mathbb{E}_{z \sim p(z), s \sim \pi_{\theta}} \left[-\frac{1}{\sigma^2} \|z - s\|^2 \right]$$

• This provides a novel interpretation for GCRL as a variational empowerment algorithm with a hard-coded and fixed variational distribution: by varying expressivity through the choice of q(z|s), we can interpolate between GCRL and variational empowerment

Method	Goal space	$q_\lambda(z s)$	Learnable λ	Learning π_z	Algorithm 1 La
GCRL (Kaelbling, 1993) aGCRL (ours) linGCRL (ours) InfoGAIL* (Li et al., 2017) DIAYN (Eysenbach et al., 2019) DIAYN (continuous) DISCERN (Warde-Farley et al., 2019) VISR (Hansen et al., 2020)	Continuous (\mathbb{R}^d)Continuous (\mathbb{R}^d)Continuous (\mathbb{R}^d)DiscreteDiscreteContinuous (\mathbb{R}^d)= S (e.g. image)Continuous (\mathbb{R}^d)	$\mathcal{N}(s, \sigma^2 I)$ $\mathcal{N}(s, \Sigma)$ $\mathcal{N}(As, \sigma^2 I)$ Categorical Categorical $\mathcal{N}(\mu(s), \Sigma(s))$ Non-parametric vMF($\mu(s), \kappa$)	$\begin{array}{c} - \\ \Sigma \\ A \\ q_{\lambda} \\ q_{\lambda} \\ \mu(\cdot) \\ \text{Embedding}(\cdot) \\ \mu(\cdot) \end{array}$	(HER) HER P-HER - - HER SF	Input: target sta Output: average $\bar{d} \leftarrow 0, \bar{z} \leftarrow 0$ for $i \leftarrow 1$ to N Embed targe Run $\pi(\cdot \cdot, z)$ Embed reace $\bar{d} \leftarrow \bar{d} \cdot \bar{d} \cdot \bar{d}$
VGCRL	Any	Any	Any	P-HER or SF	$ d \leftarrow d + d(d)$ end

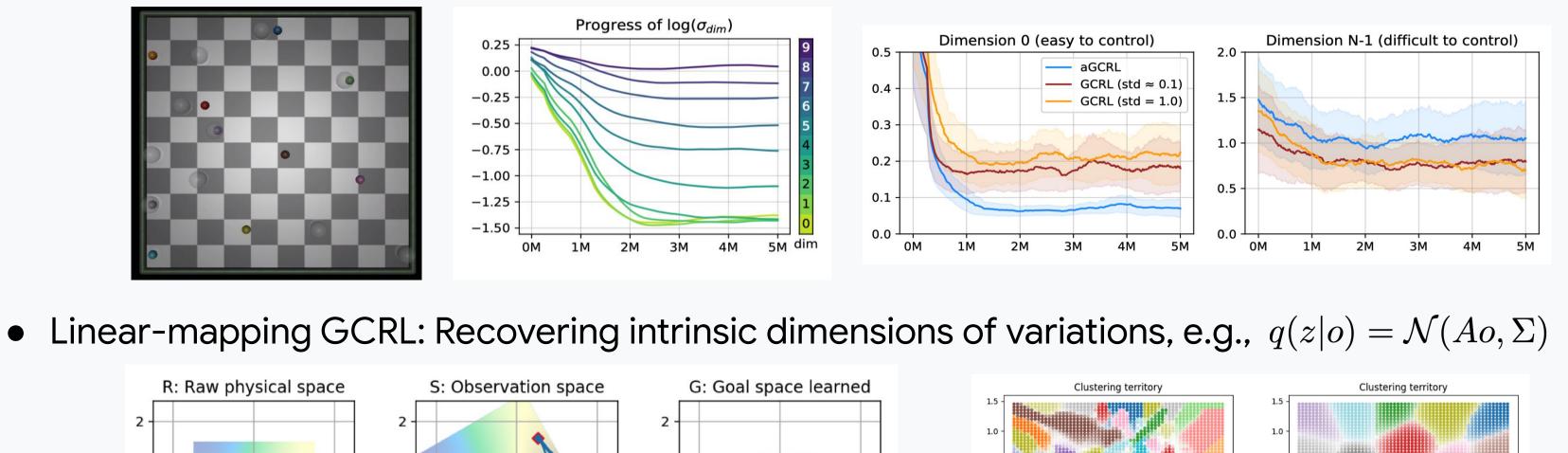
 $q_{\lambda}(z|s)|$

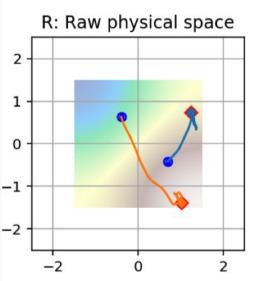
Latent Goal Reaching Metric states $s^{1:N}$, trained $\pi_{\theta}(a|s, z), q_{\lambda}(z|s)$ ige goal distance \bar{d} , average latent distance \bar{z}

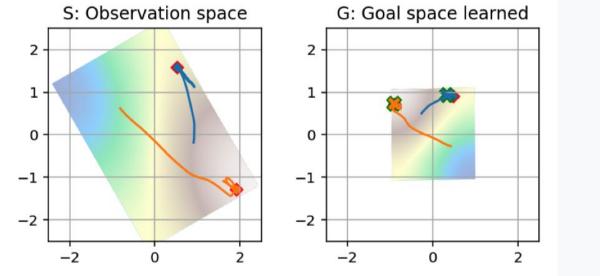
get $z^i \leftarrow \mathbb{E}\left[q_\lambda(\cdot|s^i)\right]$ z^i) for T time steps, observe final state s_T^i where $z_T^i \leftarrow \mathbb{E}\left[q_\lambda(\cdot|s_T^i)\right]$ $d(s^i, s^i_T)/N, \bar{z} \leftarrow \bar{z} + d(z^i, z^i_T)/N$

GCRL as Variational Empowerment

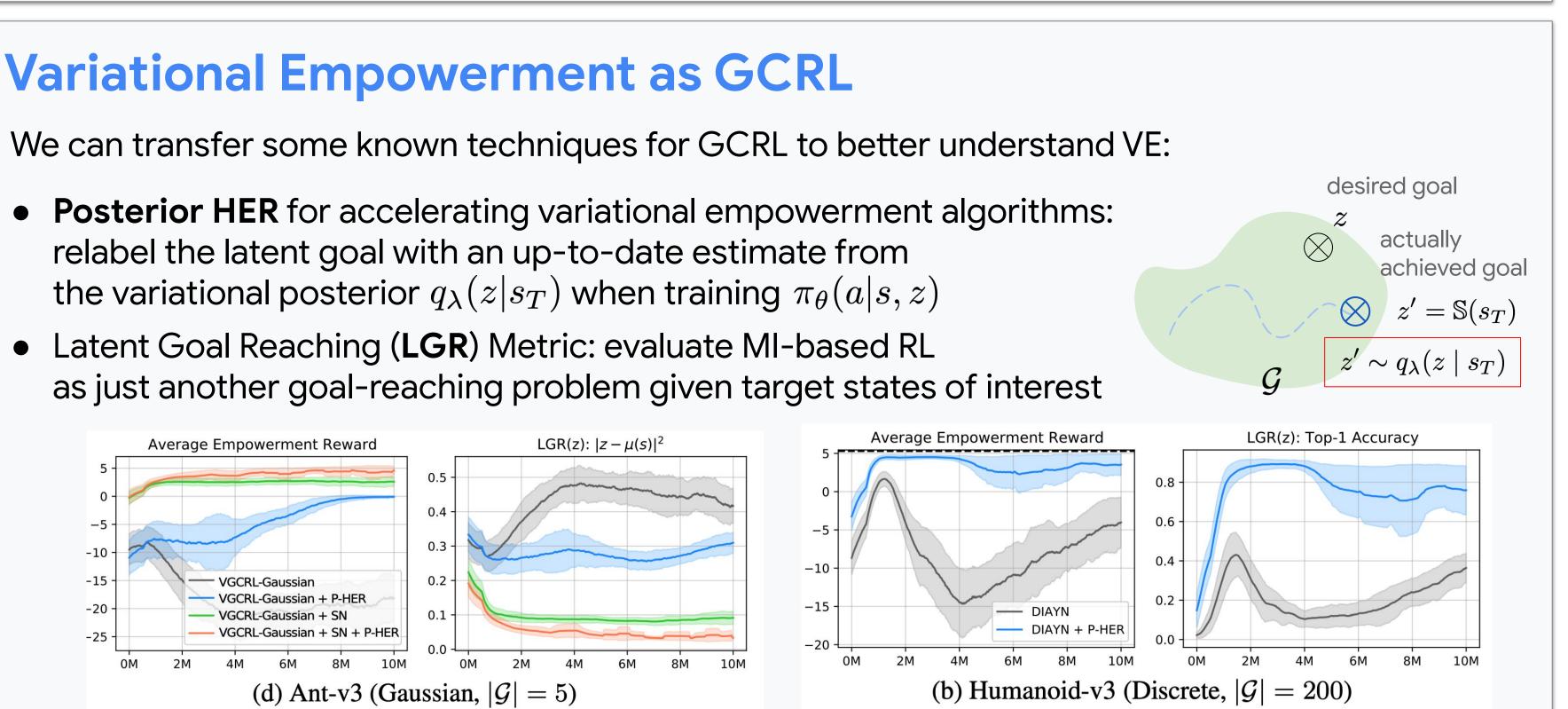
similar to automatic relevance determination (ARD): e.g., $q_{\lambda}(z|s) = \mathcal{N}(s, \Sigma)$







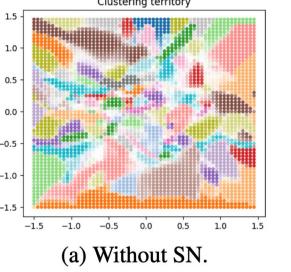
(SN) can play an important role for VE and VGCRL.

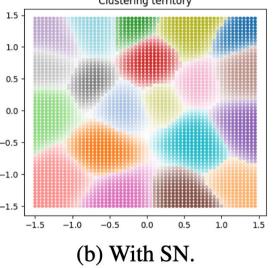


ICML 2021

University of Michigan **Google Research**

• Adaptive-variance GCRL (aGCRL) can prioritize goal-reaching in more controllable dimensions,





• However, high expressivity may not necessarily mean better performance for latent space learning and representation learning: proper regularizations such as Spectral Normalizations