Crowdsourcing via Annotator Co-occurrence Imputation and Provable Symmetric Nonnegative Matrix Factorization

Shahana Ibrahim, Xiao Fu

School of EECS
Oregon State University, Corvallis, OR, USA

Virtual Talk at ICML 2021 July 18-24, 2021

The Big Data Deluge and Al

 Many popular Al tasks, e.g., tasks in computer vision, natural language processing, speech processing, are in dire demand for

large amount of high quality labeled data

Millions of labeled images in ImageNet dataset (www.image-net.org)

Amazon team taps millions of Alexa interactions to reduce NLP error rate

KYLE WIGGERS @KYLE_L_WIGGERS JANUARY 22, 2019 6:59 AM

Amazon VP of devices David Limp at a September 2018 event at Amazon headquarters in Seattle, Washington.

Image Credit: Khari Johnson / VentureBeat

Data Labeling

- Labeling is not a trivial task!
 - need to label large volume of data
 - need some level of expertise to produce high quality labels

Millions of contract workers annotate machine learning data

Data Labeling: Al's Human Bottleneck

 \Box

Source: https://medium.com/whattolabel

Crowdsourcing - Using Power of the Crowd

- Crowdsourcing techniques
 - ☐ employ a group of annotators to label the data items
 - ☐ integrate the acquired labels

Source: https://ideascale.com/innovation

- Crowdsourcing platforms have selfregistered annotators who
 - may not be well-trained
 - not all annotators label all the data

Hence, simple integration strategies like majority voting may work poorly

Crowdsourcing Dataflow

Dawid-Skene Model

- Annotation integration is a long-existing research topic in machine learning
- Dawid and Skene [1979] formulated this as model identification problem

Source: https://www.trakken.de/insight

- a naive Bayes model
- simple and effective
- based on conditional independence of annotations

Dawid-Skene Model

Under naive Bayes,

$$\Pr(X_1 = k_1, \dots, X_M = k_M) = \sum_{k=1}^K \Pr(Y = k) \prod_{m=1}^M \Pr(X_m = k_m | Y = k)$$

ullet Define the **confusion matrix** $m{A}_m \in \mathbb{R}^{K imes K}$ for each annotator and the **prior** probability vector $m{\lambda} \in \mathbb{R}^K$ such that

$$A_m(k_m, k) := \Pr(X_m = k_m | Y = k)$$
 $\lambda(k) := \Pr(Y = k)$

ullet One can build a maximum $a\ posteriori$ probability (MAP) estimator for y_n after identifying $m{A}_m$'s and $m{\lambda}$

Model Identification \implies Identify A_m 's and $\lambda \implies$ Label Integration

Prior Approaches with Dawid-Skene Model

- Dawid-Skene (D&S) Model & EM Algorithm [Dawid and Skene, 1979] :
 - No model identifiability & algorithm tractability
- Spectral Methods [Ghosh et al., 2011; Karger et al., 2011b]:
 - Identifiability established for simpler cases, for e.g., binary classification
- Bayesian Methods [Whitehill et al., 2009; Zhou et al., 2012]:
 - Extended D&S model considering "item difficulty" and "annotator ability"
 - No model identifiability
- Tensor Methods [Zhang et al., 2016; Traganitis et al., 2018]:
 - Using third-order co-occurrences of annotator responses, for e.g., $\Pr(X_m = k_m, X_\ell = k_\ell, X_j = k_j)$
 - Established model identifiability
 - High sample complexity due to third-order statistics
 - High computational cost from the tensor decomposition

Recent Development - Coupled NMF

Pairwise co-occurrence of annotator responses: $| R_{m,j} = A_m D A_i^{\top}, D = \text{diag}(\lambda)$

$$oldsymbol{R}_{m,j} = oldsymbol{A}_m oldsymbol{D} oldsymbol{A}_j^ op, oldsymbol{D} = ext{diag}(oldsymbol{\lambda})$$

$$\underbrace{\Pr(X_m = k_m, X_j = k_j)}_{\boldsymbol{R}_{m,j}(k_m, k_j)} = \sum_{k=1}^K \underbrace{\Pr(Y = k)}_{\boldsymbol{\lambda}(k)} \underbrace{\Pr(X_m = k_m | Y = k)}_{\boldsymbol{A}_m(k_m, k)} \underbrace{\Pr(X_j = k_j | Y = k)}_{\boldsymbol{A}_j(k_j, k)}$$

- less sample complexity compared to third-order statistics [Han et al., 2015]
- ullet If annotators m and j co-label some items, $oldsymbol{R}_{m,j}$ can be estimated via sample averaging
- The CNMF criterion in [Ibrahim et al., 2019]:

find
$$\{\boldsymbol{A}_m\}_{m=1}^M, \boldsymbol{\lambda}$$

s.t. $\boldsymbol{R}_{m,j} = \boldsymbol{A}_m \boldsymbol{D} \boldsymbol{A}_j^{\mathsf{T}}, \ (m,j) \in \boldsymbol{\Omega}, \leftarrow \ observed \ set$
 $\boldsymbol{A}_m \geq \boldsymbol{0}, \boldsymbol{1}^{\mathsf{T}} \boldsymbol{A}_m = \boldsymbol{1}^{\mathsf{T}}, \ \boldsymbol{1}^{\mathsf{T}} \boldsymbol{\lambda} = 1, \boldsymbol{\lambda} \geq \boldsymbol{0}.$

Dog images source: www.datasciencecentral.com

Identifiability Claim in CNMF

• Identifiability under the assumption that there exist two subsets of the annotators \mathcal{P}_1 and \mathcal{P}_2 , where $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ and $\mathcal{P}_1 \cup \mathcal{P}_2 \subseteq [M]$,

$$m{H}^{(1)} := [m{A}_{m_1}^ op, \dots, m{A}_{m_{|\mathcal{P}_1|}}^ op]^ op, \quad m{H}^{(2)} := [m{A}_{j_1}^ op, \dots, m{A}_{j_{|\mathcal{P}_2|}}^ op]^ op,$$

such that $m{H}^{(1)}$ and $m{H}^{(2)}$ satisfy the *sufficiently scattered condition* (SSC)

Definition 1: (SSC) [Fu et al., 2015]

Any nonnegative matrix $\boldsymbol{Z} \in \mathbb{R}_{+}^{I \times K}$ satisfies the SSC if the conic hull of \boldsymbol{Z}^{\top} (i.e., $\operatorname{cone}(\boldsymbol{Z}^{\top})$) satisfies $\mathcal{C} \subseteq \operatorname{cone}\{\boldsymbol{Z}^{\top}\}$ where $\mathcal{C} = \{\mathbf{x} \in \mathbb{R}^{K} \mid \mathbf{x}^{\top}\mathbf{1} \geq \sqrt{K-1}\|\mathbf{x}\|_{2}\}.$

ullet A row of $oldsymbol{H}^{(i)}$ (i.e., a row of certain $oldsymbol{A}_m$) close to kth unit vector implies that

$$A_m(k,k) \approx 1$$
 and $A_m(k,k_m) \approx 0, k_m \neq k$ (class specialists),

i.e., annotator m rarely confuses data from other classes with those from class k

Challenges in CNMF Framework

Identifiability Challenge:

- Both ${\cal H}^{(1)}$ and ${\cal H}^{(2)}$ satisfy the SSC \implies the disjoint ${\cal P}_1$ and ${\cal P}_2$ both contain "class specialists" for all K classes
- The condition is somewhat restrictive

Computational Challenges:

- Recall the CNMF criterion in [Ibrahim et al., 2019]:

$$\begin{aligned} &\text{find } \{\boldsymbol{A}_m\}_{m=1}^M, \boldsymbol{\lambda} \\ &\text{s.t. } \boldsymbol{R}_{m,j} = \boldsymbol{A}_m \boldsymbol{D} \boldsymbol{A}_j^\top, \ (m,j) \in \boldsymbol{\Omega}, \leftarrow \ \textit{observed set} \\ &\boldsymbol{A}_m \geq \boldsymbol{0}, \boldsymbol{1}^\top \boldsymbol{A}_m = \boldsymbol{1}^\top, \ \boldsymbol{1}^\top \boldsymbol{\lambda} = 1, \boldsymbol{\lambda} \geq \boldsymbol{0} \end{aligned}$$

- * handled using KL-divergence based model fitting problem with constraints
- The algorithm is hardly scalable
- Unclear convergence guarantee even if there is no noise
- Unclear identifiability guarantee when there is noise

Proposed Approach - SymNMF Framework

ullet Assume that all $m{R}_{m,j} = m{A}_m m{D} m{A}_j^{\! op}$ are available for all $m,j \in [M]$

Symmetric Non-negative Matrix Factorization (SymNMF) Model

$$oldsymbol{X} = egin{bmatrix} oldsymbol{R}_{1,1} & \dots & oldsymbol{R}_{1,M} \ dots & \ddots & dots \ oldsymbol{R}_{M,1} & \dots & oldsymbol{R}_{M,M} \end{bmatrix} = oldsymbol{egin{bmatrix} oldsymbol{A}^ op, \dots, oldsymbol{A}^ op, oldsymbol{A}^ op, \dots, oldsymbol{A}^ op, oldsymbol{A}^ op, oldsymbol{A}^ op, \dots, oldsymbol{A}^ op, oldsymbol{A}^ op$$

- If H satisfies SSC, the SymNMF model is unique [Huang et al., 2014], i.e., A_m 's and λ can be identified upto common column permutations
- ullet SSC of $oldsymbol{H} \implies$ only one set of "class specialists" is needed
 - recall that the CNMF framework in [Ibrahim et al., 2019] needs two disjoint sets of annotators \mathcal{P}_1 and \mathcal{P}_2 both contain "class specialists" for all K classes
 - much easier to satisfy compared to the CNMF framework case

Missing Co-occurrences

- ullet The challenge in SymNMF framework is that many $oldsymbol{R}_{m,j}$'s may be missing:
 - $R_{m,m} = A_m D A_m^{ op}$, $\forall m$ do not have physical meaning and thus cannot be observed
 - if annotators m,j never co-labeled any items, $oldsymbol{R}_{m,j}$ is missing

- ullet Imputing unobserved blocks $(R_{m,j}$'s) can help estimate H from the SymNMF
- How to impute $R_{m,j}$'s with provable guarantees?

Designated Annotators-based Imputation

ullet In crowdsourcing, some annotators may be designated to co-label items with other annotators.

Designated Annotators-based Imputation

• In crowdsourcing, some annotators may be designated to co-label items with other annotators.

Designated Annotators-based Imputation

1.
$$\boldsymbol{C} \longleftarrow [\boldsymbol{R}_{m,r}^{\top}, \boldsymbol{R}_{\ell,r}^{\top}]^{\top}$$

2.
$$\boldsymbol{C} \stackrel{\mathsf{thin}\;\mathsf{SVD}}{\longrightarrow} [\boldsymbol{U}_m^\top, \boldsymbol{U}_\ell^\top]^\top \boldsymbol{\Sigma}_{m,\ell,r} \boldsymbol{V}_r^\top$$

3.
$$oldsymbol{R}_{m,n} \longleftarrow oldsymbol{U}_m oldsymbol{U}_\ell^{-1} oldsymbol{R}_{n,\ell}^{ op}$$

The diagonal blocks $m{R}_{m,m}$'s can be estimated by asking annotators ℓ, r to estimate $m{R}_{m,\ell}$, $m{R}_{m,r}$, and $m{R}_{\ell,r}$

Theorem 1: (Informal)

Assume that $R_{m,r}$, $R_{n,\ell}$ and $R_{\ell,r}$ are estimated using at least S items and that $\kappa(A_m) \leq \gamma$ and $\mathrm{rank}(A_m) = \mathrm{rank}(D) = K$ for all m. Suppose that S is above certain threshold. Then, any unobserved $R_{m,n}$ can be estimated via (1)-(3), with probability of at least $1-\delta$ such that $\|\widehat{R}_{m,n} - R_{m,n}\|_{\mathrm{F}} = O\left(K^2\gamma^3\sqrt{\log(1/\delta)/S}\right)$.

What if we do not have designated annotators?

Robust Co-occurrence Imputation Criterion

subject to
$$\|\boldsymbol{U}_m\|_{\mathrm{F}} \leq D_{(certain\ upper\ bound)},\ \forall m$$

- block ℓ_2/ℓ_1 -mixed norm based criterion
- the formulation is robust under such unbalanced estimates

Theorem 2: Stability under Finite Samples

Assume that $\widehat{m{R}}_{m,j}$'s are estimated with $S_{m,j}$ samples, $orall \; (m,j) \in m{\Omega}$ and each $\widehat{m{R}}_{m,j}$ is observed with the same probability. Let $\{m{U}_m^*, m{U}_i^*\}$ be any optimal solution of the above. Then we have

$$\frac{1}{L} \sum_{m < j} \|\boldsymbol{U}_m^* (\boldsymbol{U}_j^*)^\top - \boldsymbol{R}_{m,j}\|_{\mathrm{F}} \le C \sqrt{\frac{MK^2 \log(M)}{|\boldsymbol{\Omega}|}} + \left(\frac{1}{|\boldsymbol{\Omega}|} + \frac{1}{L}\right) \sum_{(m,j) \in \boldsymbol{\Omega}} \frac{1 + \sqrt{M}}{\sqrt{S_{m,j}}},$$

with probability of at least $1 - 3\exp(-M)$, where L = M(M-1)/2 and C > 0.

An iteratively reweighted algorithm (reminiscent of the ℓ_2/ℓ_1 mixed norm minimization [Chartrand and Yin, 2008]) is employed to solve the problem

Shifted ReLU Empowered SymNMF

Assuming that X is observed after co-occurrence imputation:

$$m{X} = m{H}m{H}^ op \stackrel{\mathsf{square root decomposition}}{\longrightarrow} m{X} o m{U}m{U}^ op \implies m{U} = m{H}m{Q}^ op, m{Q} ext{ is orthogonal}$$

Estimation Criterion:

$$\begin{aligned} & \underset{\boldsymbol{H},\boldsymbol{Q}}{\text{minimize}} & \left\|\boldsymbol{H} - \boldsymbol{U}\boldsymbol{Q}\right\|_{\mathrm{F}}^2 \\ & \text{subject to} & \boldsymbol{H} \geq \boldsymbol{0}, \; \boldsymbol{Q}^{\top}\boldsymbol{Q} = \boldsymbol{I} \end{aligned}$$

Proposed Algorithm:

 $\boldsymbol{H}_{(t+1)} \leftarrow \text{ReLU}_{\alpha_{(t)}} \left(\boldsymbol{U}\boldsymbol{Q}_{(t)}\right) \text{ (Orthogonal projection of each}$ $\text{element of } \boldsymbol{U}\boldsymbol{Q}_{(t)} \text{ to } [\alpha_{(t)}, +\infty))$ $\boldsymbol{W}_{(t+1)}\boldsymbol{\Sigma}_{(t+1)}\boldsymbol{V}_{(t+1)}^{\top} \leftarrow \text{svd} \left(\boldsymbol{H}_{(t+1)}^{\top}\boldsymbol{U}\right) \left. \right\} \text{ (Procrustes projection)}$ $\boldsymbol{Q}_{(t+1)} \leftarrow \boldsymbol{V}_{(t+1)}\boldsymbol{W}_{(t+1)}^{\top}$

- reminiscent of the SymNMF algorithm proposed in [Huang et al., 2014]
 - always uses $\alpha_{(t)}=0$; convergence w/wo noise is unclear
- elementwise shifted ReLU operator is crucial for guaranteeing the convergence

Convergence of the Proposed SymNMF Algorithm

- Convergence analysis for SymNMF algorithms is challenging due to NP-hardness
 - global convergence/est. accuracy analysis is rarely seen
 - most existing SymNMF works showed only stationary point convergence [Huang et al., 2014; He et al., 2011]

Theorem 3: (Informal)

Consider $\widehat{\boldsymbol{U}} = \boldsymbol{H}\boldsymbol{Q}^{\top} + \boldsymbol{N}$. Denote $\nu = \|\boldsymbol{N}\|_{\mathrm{F}}$, $\sigma = \|\boldsymbol{H}\|_{\mathrm{F}}$, $h_{(t)} = \|\boldsymbol{H}_{(t)} - \boldsymbol{H}\boldsymbol{\Pi}\|_{\mathrm{F}}^2$ and $q_{(t)} = \|\boldsymbol{Q}_{(t)} - \boldsymbol{Q}\boldsymbol{\Pi}\|_{\mathrm{F}}^2$, where $\boldsymbol{\Pi}$ is any permutation matrix. Under the assumptions that,

- \square **H** is full rank and sparse enough; the energy of range space of **H** is well spread over its rows;
- \square the noise term ν and the initial error $q_{(0)}$ are small enough;

there exists $\alpha_{(t)}=\alpha>0$, $\eta>0$ and $0<\rho<1$ such that with high probability,

$$q_{(t)} \leq
ho q_{(t-1)} + O\left(K\sigma^2
u^2
ight), \quad h_{(t)} \leq 2\eta\sigma^2q_{(t-1)} + 2
u^2 \leftarrow ext{ linear convergence}$$

ullet The rate parameter ho is smaller (faster convergence) if $oldsymbol{H}$ is sparser

Experiments - UCI Data

- 10 different MATLAB classifiers are trained and chosen as annotators
- Each annotator is allowed to label an item with prob. $p_m \in (0,1]$; randomly choosing two annotators and letting them label with higher prob. (i.e., p_d)

Table 1: UCI Connect4 dataset (N = 20, 561, M = 10, K = 3)

Algorithms	$p_m = 0.3$	$p_m \in (0.3, 0.5), p_d = 0.8$	$p_m \in (0.5, 0.7), p_d = 0.8$	Time(s)
RobSymNMF	33.26	33.06	32.16	0.142
RobSymNMF-EM	34.27	33.20	32.11	0.191
DesSymNMF	33.45	32.18	31.42	0.061
DesSymNMF-EM	33.94	32.50	31.40	0.128
SymNMF (w/o imput.)	34.87	35.71	32.00	0.052
MultiSPA	47.78	42.24	49.54	0.020
CNMF	36.26	39.55	34.70	4.741
TensorADMM	36.20	34.34	35.18	5.183
Spectral-D&S	64.28	66.95	71.97	20.388
MV-EM	34.14	34.17	34.19	0.107
MinimaxEntropy	36.20	36.17	35.46	27.454
KOS	54.55	43.21	39.41	12.798
Majority Voting	37.76	36.88	36.75	-

Experiments - Amazon Mechanical Turk (AMT) Data

• Labeled by human annotators from the AMT platform

Table 2: AMT datasets "RTE" and "TREC"

Algorithms	RTE		TREC	
	(N = 800,	M = 164, K = 2)	(N = 19, 03)	33, M = 762, K = 2)
	Error (%)	Time (s)	Error (%)	Time (s)
RobSymNMF	7.25	2.31	30.68	64.99
RobSymNMF-EM	7.12	2.4	29.62	67.39
DesSymNMF	13.87	3.32	36.75	71.31
DesSymNMF-EM	7.25	3.43	29.36	72.13
SymNMF (w/o imput.)	48.75	0.23	35.47	57.60
MultiSPA	8.37	0.18	31.56	51.34
CNMF	7.12	18.12	29.84	536.86
TensorADMM	N/A	N/A	N/A	N/A
Spectral-D&S	7.12	6.34	29.58	919.98
MV-EM	7.25	0.09	30.02	3.12
MinimaxEntropy	7.5	6.4	30.89	356.32
KOS	39.75	0.07	51.95	8.53
GhoshSVD	49.12	0.06	43.03	7.18
EigenRatio	9.01	0.07	43.95	1.87
PG-TAC	8.12	50.41	33.89	917.21
$\overline{ exttt{CRIA}_V}$	9.37	49.04	34.59	900.34
Majority Voting	10.31	N/A	34.85	N/A

Summary

- Proposed a **D&S model identification** based on:
 - pairwise co-occurrences of annotator responses
 - SymNMF-based framework that offers strong identifiability
- Two lightweight algorithms for provably imputing missing co-occurrences
- Proposed a computationally economical SymNMF algorithm with convergence guarantees
- Promising performance in real-data experiments

Thank You!!

References

- R. Chartrand and Wotao Yin. Iteratively reweighted algorithms for compressive sensing. In *Proceedings of International Conference on Acoustics, Speech and Signal Processing*, pages 3869 –3872, 2008.
- Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. *Applied statistics*, pages 20–28, 1979.
- X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos. Blind separation of quasi-stationary sources: Exploiting convex geometry in covariance domain. *IEEE Trans. Signal Process.*, 63(9):2306–2320, May 2015.
- Arpita Ghosh, Satyen Kale, and Preston McAfee. Who moderates the moderators?: crowdsourcing abuse detection in user-generated content. In *Proceedings of the ACM conference on Electronic commerce*, pages 167–176, 2011.

- Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax estimation of discrete distributions under l_1 loss. *IEEE Trans. Inf. Theory*, 61(11):6343–6354, 2015.
- Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej Cichocki. Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. *IEEE Trans. Neural Netw.*, 22(12):2117–2131, 2011.
- K. Huang, N. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. *IEEE Trans. Signal Process.*, 62(1):211–224, 2014.
- Shahana Ibrahim, Xiao Fu, Nikos Kargas, and Kejun Huang. Crowdsourcing via pairwise co-occurrences: Identifiability and algorithms. In *Advances in Neural Information Processing Systems*, volume 32, pages 7847–7857, 2019.
- D. R. Karger, S. Oh, and D. Shah. Budget-optimal crowdsourcing using low-rank matrix approximations. In *Annual Allerton Conference on Communication, Control, and Computing*, pages 284–291, 2011b.

Panagiotis A Traganitis, Alba Pages-Zamora, and Georgios B Giannakis. Blind multiclass ensemble classification. *IEEE Trans. Signal Process.*, 66(18):4737–4752, 2018.

Jacob Whitehill, Ting fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L. Ruvolo. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In *Advances in Neural Information Processing Systems*, volume 22, pages 2035–2043. 2009.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral methods meet EM: A provably optimal algorithm for crowdsourcing. *Journal of Machine Learning Research*, 17(102):1–44, 2016.

Dengyong Zhou, Sumit Basu, Yi Mao, and John C. Platt. Learning from the wisdom of crowds by minimax entropy. In *Advances in Neural Information Processing Systems*, volume 25, pages 2195–2203. 2012.