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The Big Data Deluge and Al

e Many popular Al tasks, e.g., tasks in computer vision, natural language processing,
speech processing, are in dire demand for

large amount of high quality labeled data

Amazon team taps millions of
Alexa interactions to reduce NLP
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Millions of labeled images in ImageNet dataset (www.image-net.org)
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Data Labeling

e Labeling is not a trivial task!

— need to label large volume of data
— need some level of expertise to produce high quality labels

Millions of contract workers annotate machine learning data

Data Labeling: Al’'s Human
Bottleneck

E Matthias Heller Mar 9, 2020 - 4 min read H
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Source: https://medium.com/whattolabel
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Crowdsourcing - Using Power of the Crowd

e Crowdsourcing techniques

[1 employ a group of annotators to label
the data items
[] integrate the acquired labels
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Source: https://ideascale.com/innovation
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e Crowdsourcing platforms have self-

cickwol IR C??.? registered annotators who
2 R e [1 may not be well-trained
[] not all annotators label all the data
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Hence, simple integration strategies like majority voting may work poorly
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Dawid-Skene Model
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identification problem

Source: https://www.trakken.de/insight

e a naive Bayes model
e simple and effective

e based on conditional independence of annotations
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Dawid-Skene Model

e Under naive Bayes,

M
Pr(Y = k) || Pr(Xm = knlY = k)

m=1

Pr(X1 :kl,...,XM:kM) =

gt

e Define the confusion matrix A,, € REX® for each annotator and the prior
probability vector A\ € R” such that

Ak, k) = Pr(X,, = k,|Y = k) Ak) :=Pr(Y =k)

e One can build a maximum a posteriori probability (MAP) estimator for y,, after
identifying A,,’s and A

Model Identification — Identify A,,’s and A = Label Integration




Prior Approaches with Dawid-Skene Model

Dawid-Skene (D&S) Model & EM Algorithm [Dawid and Skene, 1979]
— No model identifiability & algorithm tractability

Spectral Methods [Ghosh et al., 2011; Karger et al., 2011b]:

— Identifiability established for simpler cases, for e.g., binary classification
Bayesian Methods [Whitehill et al., 2009; Zhou et al., 2012]:

— Extended D&S model considering “item difficulty” and “annotator ability”
— No model identifiability

Tensor Methods [Zhang et al., 2016; Traganitis et al., 2018]:

— Using third-order co-occurrences of annotator responses, for e.g., Pr(X,, =
km, Xe = ko, X; = k)

— Established model identifiability

— High sample complexity due to third-order statistics

— High computational cost from the tensor decomposition




Recent Development - Coupled NMF

e Pairwise co-occurrence of annotator responses: | R,,, ; = A, DA, D = diag(\)

PI’(Xm = ]{m,Xj = kj) =

gt

Pr(Y = k) Pr(X, = km|Y = k) Pr(X; = k;|Y = k)

A\ . 7 \\ 7 \_

A(k) A (k) Aj(kj,k)

— less sample complexity compared to third-order statistics [Han et al., 2015]

e If annotators m and j co-label some items,
R,, ; can be estimated via sample averaging

Annotator j

e The CNMF criterion in [Ibrahim et al., 2019]:

find {A,,}M_, A

m:]_?

st. Ry, = AmDA—jl-_, (m,j) € §2,< observed set
A,>01'4,,=1", 1'"Ax=1,1>0.

Dog images source : www.datasciencecentral.com
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Identifiability Claim in CNMF

e |dentifiability under the assumption that there exist two subsets of the annotators

P1 and Py, where Py NPy =0 and Py U Py C [M],

HY .= (AT AL 1T, H®=1A],..., A T,

mitSimpy 1T Ry

such that HM and H® satisfy the sufficiently scattered condition (SSC)

Definition 1: (SSC) [Fu et al., 2015]

ey Cl‘ass 1 “specialists” € 1 No class specialists

Any nonnegative matrix Z € RiXK satisfies the SSC if the
conic hull of Z' (i.e., cone(Z")) satisfies C C cone{Z '} N UL/
where C = {X c ]RK | XT]. 2 /K — 1HX||2} €2 e €3 €2 No SSC €3

R? W cone(Z')

e Arow of H® (i.e., a row of certain A,,) close to kth unit vector implies that

Ak, k)~1 and A,,(k k) =0, k, #k (class specialists),

I.e., annotator m rarely confuses data from other classes with those from class k




Challenges in CNMF Framework
¢ ldentifiability Challenge:

— Both H"Y and H® satisfy the SSC = the disjoint P; and Py both contain
“class specialists” for all K classes
— The condition is somewhat restrictive

e Computational Challenges:

— Recall the CNMF criterion in [lbrahim et al., 2019]:

find {A} 0, A
s.t. Ry, j = AmDA;, (m,j) € £2,< observed set
A,>01A4,=1,12=1,2>0
x handled using KL-divergence based model fitting problem with constraints
— The algorithm is hardly scalable

— Unclear convergence guarantee even if there is no noise
— Unclear identifiability guarantee when there is noise
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Proposed Approach - SymNMF Framework

e Assume that all R, ; = AmDA; are available for all m,j € [M]

Symmetric Non-negative Matrix Factorization (SymNMF) Model

X=|: - i |=[A],...A,'DY2DY’4],... A}

RM,1 RM,M P P}rT

o If H satisfies SSC, the SymNMF model is unique [Huang et al., 2014], i.e.,
A,,’s and X\ can be identified upto common column permutations

e SSC of H — only one set of “class specialists” is needed

— recall that the CNMF framework in [Ibrahim et al., 2019] needs two disjoint
sets of annotators P; and Py both contain “class specialists” for all K classes
— much easier to satisfy compared to the CNMF framework case
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Missing Co-occurrences

e The challenge in SymNMF framework is that many R,, ;'s may be missing:

- Ry = A,,DA] , Vm do not have physical meaning and thus cannot be
observed
— if annotators m, j never co-labeled any items, RR,, ; is missing

TN
A Rpjisnot)
- observed?.”

T, At
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, /\‘%notatorj
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e Imputing unobserved blocks (R, ;'s) can help estimate H from the SymNMF

[ observed [ ] Not observed

e How to impute R,, ;’s with provable guarantees?
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Designated Annotators-based Imputation

e |In crowdsourcing, some annotators may be designated to co-label items with
other annotators.

Designated Annotators

Annotators £ and r

Pl -,
A - ;
ARy 5 is not 4

“observed g

Annotator n

Annotatorm
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Designated Annotators-based Imputation

e |In crowdsourcing, some annotators may be designated to co-label items with
other annotators.
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Designated Annotators-based Imputation
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The diagonal blocks R, ,,,'s can be estimated by asking

Annotatorm o,
A

Annotator ¢

annotators £, r to estimate R,,, », R, ,, and Ry,

Theorem 1: (Informal)

Assume that R,, ,, R, ¢ and Ry, are estimated using at least S items and that k(A,,) < v
and rank(A,,) = rank(D) = K for all m. Suppose that S is above certain threshold. Then,
any unobserved R,, ,, can be estimated via (1)-(3), with probability of at least 1 — § such that

| R — Runalle = O (K*y*/10g(1/6)/5)

e What if we do not have desighated annotators?
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Robust Co-occurrence Imputation Criterion

e block ¢5/¢1-mixed norm based criterion
C e = T ~ _ _
minimize g R —UnU; |[F e R, ;s are estimated using unequal no
Uman> V(m,j)es2 . f |
(m,j)ef2 of samples
e the formulation is robust under such

SUbjeCt to HUmHF S D(certam upper bound), Ym i
unbalanced estimates

Theorem 2: Stability under Finite Samples

Assume that fim,j’s are estimated with S,,, ; samples, V (m, j) € £2 and each R,,, ; is observed
with the same probability. Let {U , U} be any optimal solution of the above. Then we have

MKZ2log(M) 11 1+ VM
2] tartz) =

LB iea VOmi

1 T
T d NULUF) =Ry jlls <C
m<j

with probability of at least 1 — 3 exp(— M), where L = M (M — 1)/2 and C > 0.

An iteratively reweighted algorithm (reminiscent of the /5//; mixed norm
minimization [Chartrand and Yin, 2008]) is employed to solve the problem
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Shifted ReLU Empowered SymNMF

Assuming that X is observed after co-occurrence imputation:

square root decomposition

X=HH' ; X »>UU'" = U =HQ',Q is orthogonal

Proposed Algorithm:

Estimation Criterion: H (441) <= RelUq (UQ+)) (Orthogonal projection of each

minimize ||[H — UQ]|/:

H.,Q element of UQ ;) to [oy), +00))

. T .
subject to H >0, Q Q=1 W(t+1)2(t+1)VL+1) < svd (HLH)U) } (Procrustes
Q(t+1) A V(t+1)W—{t+1) pr0jectlon)

e reminiscent of the SymNMF algorithm proposed in [Huang et al., 2014]

— always uses a ;) = 0; convergence w/wo noise is unclear

e elementwise shifted ReLU operator is crucial for guaranteeing the convergence
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Convergence of the Proposed SymNMF Algorithm

e Convergence analysis for SymNMF algorithms is challenging due to NP-hardness

— global convergence/est. accuracy analysis is rarely seen

— most existing SymNMF works showed only stationary point convergence [Huang
et al., 2014; He et al., 2011]

Theorem 3: (Informal)

Consider U = HQ" 4+ N. Denote v = |[N|r, o = ||H||r, hy = |H @ — HII||% and
qe) = [|Qu) — QHH% where IT is any permutation matrix. Under the assumptions that,

[1 H is full rank and sparse enough; the energy of range space of H is well spread over its rows;
[ the noise term v and the initial error q(() are small enough;

there exists a;) = a > 0,7 > 0 and 0 < p < 1 such that with high probability,

q) < pq—1) + O (Ka21/2) , he < 27702q(t_1) + 2074 linear convergence

e The rate parameter p is smaller (faster convergence) if H is sparser
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Experiments - UCI Data

e 10 different MATLAB classifiers are trained and chosen as annotators

e Each annotator is allowed to label an item with prob. p,, € (0,1]; randomly
choosing two annotators and letting them label with higher prob. (i.e., pg)

Table 1: UCI Connect4 dataset (N = 20,561, M = 10, K = 3)

Algorithms P = 0.3 | Pm gd(i'%’.gﬁ)’ Pm gd(i'%’.gj)’ Time(s)
RobSymNMF 33.26 33.06 32.16 0.142
RobSymNMF-EM 34.27 33.20 32.11 0.191
DesSymNMF 33.45 32.18 31.42 0.061
DesSymNMF-EM 33.94 32.50 31.40 0.128
SymNMF (w/o imput.) 34.87 35.71 32.00 0.052
MultiSPA 47.78 42.24 49.54 0.020
CNMF 36.26 39.55 34.70 4.741
TensorADMM 36.20 34.34 35.18 5.183
Spectral-D&S 64.28 66.95 71.97 20.388
MV-EM 34.14 34.17 34.19 0.107
MinimaxEntropy 36.20 36.17 35.46 27.454
K0S 54.55 43.21 39.41 12.798
Majority Voting 37.76 36.88 36.75 -
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Experiments - Amazon Mechanical Turk (AMT) Data
e Labeled by human annotators from the AMT platform

Table 2: AMT datasets “RTE" and “TREC"

Algorithms RTE TREC
(N =800, M =164, K =2) | (N =19,033, M =762, K = 2)
Error (%) Time (s) Error (%) Time (s)

RobSymNMF 7.25 2.31 30.68 64.99
RobSymNMF-EM 7.12 2.4 29.62 67.39
DesSymNMF 13.87 3.32 36.75 71.31
DesSymNMF-EM 7.25 3.43 29.36 72.13
SymNMF (w/o imput.) 48.75 0.23 35.47 57.60
MultiSPA 8.37 0.18 31.56 51.34
CNMF 7.12 18.12 290.84 536.86
TensorADMM N/A N/A N/A N/A
Spectral-D&S 7.12 6.34 29.58 919.98
MV-EM 7.25 0.09 30.02 3.12
MinimaxEntropy 7.5 6.4 30.89 356.32
K0S 39.75 0.07 51.95 8.53
GhoshSVD 49.12 0.06 43.03 7.18
EigenRatio 9.01 0.07 43.95 1.87
PG-TAC 8.12 50.41 33.89 017.21
CRIAy 9.37 49.04 34.59 900.34
Majority Voting 10.31 N/A 34.85 N/A




Summary

Proposed a D&S model identification based on:

— pairwise co-occurrences of annotator responses
— SymNMF-based framework that offers strong identifiability

Two lightweight algorithms for provably imputing missing co-occurrences

Proposed a computationally economical SymNMF algorithm with conver-

gence guarantees

Promising performance in real-data experiments
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Thank You!!
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