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Data Poisoning Attacks

Poisoned 
ML Model

e.g., degrade overall test 
performance

Often need custom attacks for different attack objectives

Induce a target model 
that encodes the 

attacker objective
e.g., has the desired test 

error 

Can be used for different attacker objectives

Model-Targeted 
Attacks (Our Focus)

Achieve certain 
attack 

objective:

Train 
Algorithm

Poisoned 
Train Data

Two Ways to Achieve the Attack Objective 

Objective-Driven 
Attacks

Maximize the 

objective

Inject Poisons

e.g., victim model 
has specific test 

error
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Model-Targeted Attack with Provable Convergence

Goal: induce 𝜃𝑝 by generating poisoning set 𝐷𝑝

Model trained on 𝐷𝑐 ∪ 𝐷𝑝 is as close as possible to 𝜃𝑝

Input: target model 𝜃𝑝, Clean Train Set 𝐷𝑐

Train a model 𝜃𝑡
on 𝐷𝑐 ∪ 𝐷𝑝(initially 

𝐷𝑝 = ∅)

Find (𝑥∗, 𝑦∗) that 
maximizes loss difference 

between 𝜃𝑡 , 𝜃𝑝

Add {(𝑥∗, 𝑦∗)}
into 𝐷𝑝

Attack Procedure

repeat



Theoretical Results

Theorem 1: if the loss function for model training is Lipschitz continuous and strongly 

convex, the maximum loss difference between the induced model from our attack and the 

target model decreases at a rate 𝑂(
𝑙𝑜𝑔 𝑇

𝑇
) , where 𝑇 is the number of poisoning points.

First model-targeted attack with provable convergence

Can be empirically computed: check the optimality of model-targeted poisoning attacks.

Proof of theorem 1 boils down to the regret analysis of the follow-the-leader algorithm 
in online learning. 

Applies to any loss function. 

Theorem 2: lower bound on number of poisoning points needed to induce a target model 𝜃𝑝 is:

sup
𝜃

risk difference between 𝜃𝑝 and 𝜃 on 𝐷𝑐

maximum loss difference between 𝜃 and 𝜃𝑝



Our Attack Converges to the Target Model

Dataset: Adult 

Euclidean Distance to the Target model vs Number of Poisons

Target Model: has 0% Acc 
on selected subpopulation 
of the data (check the 
paper for generation of 
subpopulations)

Model: Linear SVM 

Baseline: KKT Attack 
(Koh et al., 2018)



Our Attack is Empirically Effective in Achieving Objectives
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LR on Adult; Target Model: has 100% Test Error 
on the Selected Subpopulation; n = 2,005

Linear SVM on MNIST 1-7; Target Model: has 
15% of Overall Test Error; n = 6,192
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Exceeds or is comparable to the state-of-the-art model-targeted attack
(check the paper for more results)

# of Poisons # of Poisons



Optimality of Our Attacks

Our attack is close to optimal 
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# of Poisons vs Lower Bound

# of Poisons Lower Bound

There exists a gap between # of poisons and the 
lower bound: 
1) attack may not be optimal
2) empirical lower bound may be loose
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Linear SVM on Adult Dataset; All models are induced 
form our attack. Model 0: has 100 % Test Error on 

Subpop 0, Model 1: has 100 % Test Error on Subpop 1

Linear SVM on MNIST 1-7 Dataset; All models are induced from 
our attack. Model 0: 10% Test Error, Model 1: 15 % Test Error



Our Attack Outperforms Existing Objective-driven Attacks

Linear SVM model on MNIST 1-7 Dataset
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Comparison of Test Errors at Same # of Poisons
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To achieve an attacker 
objective efficiently 
with our attack, need 
to select target models 
carefully

Empirical Observation:
models with lower loss 
on clean train data and 
stronger objectives are 
preferred 

Experiments on the right: 
target model (on MNIST 1-7) 
of 15% test error with low 
loss on clean train data
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Main Takeaway

Model-targeted attack can fit for different 

attack objectives easily and is worth 

exploring further.

David Evans Yuan Tian

Saeed MahloujifarFnu Suya

Updated Paper: 
https://arxiv.org/abs/2006.16469

Code: 

https://github.com/suyeecav/model-targeted-

poisoning

Our attack provides a strong baseline 

with provable convergence and 

empirically strong performance.

Anshuman Suri


