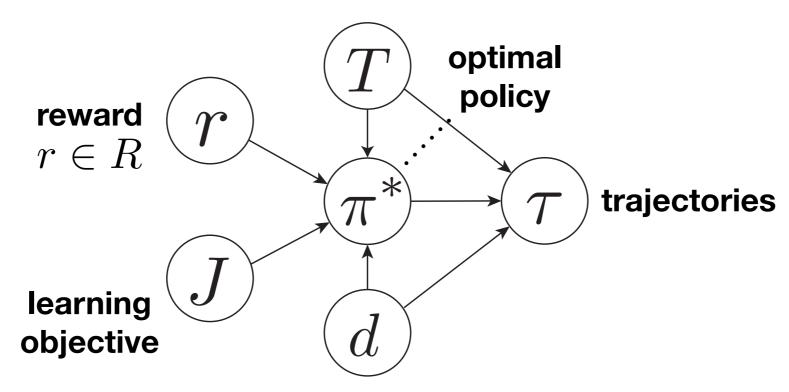
Reward Identification in IRL

Kuno Kim, Kirankumar Shiragur, Shivam Garg, Stefano Ermon

Definition: MDP Models

time horizon



 $\mathsf{domain} := (\mathcal{X}, \mathcal{A}, P, P_0)$

MDP Model

$$\mathcal{P}_{MDP}[R; d, T, J] := \{ p_r(\tau; \pi^*, d, T) : r \in R \}$$

trajectory distribution induced by optimal policy for reward $\, r \,$ in domain $d \,$

Inverse Reinforcement Learning (IRL)

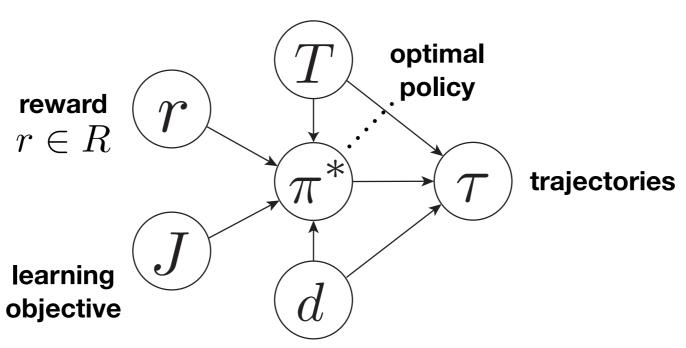
RL: Learn the optimal behavior for a given reward

$$r \to p_r(\tau; \pi^*, d, T)$$

IRL: Infer the underlying reward given optimal behavior

$$p_r(\tau; \pi^*, d, T) \rightarrow r$$

The Reward Identification Problem



 $\mathsf{domain} := (\mathcal{X}, \mathcal{A}, P, P_0)$

MDP Model

$$\mathcal{P}_{MDP}[R; d, T, J] := \{ p_r(\tau; \pi^*, d, T) : r \in R \}$$

IRL: Infer the underlying reward given optimal behavior

$$p_r(\tau; \pi^*, d, T) \to r$$

When is it possible to identify a reasonable equivalence class of rewards given knowledge of (p_r, d, T, J) ?

Definition: Identifiability

Definition 1. (Identifiability) An MDP model $\mathcal{P}_{\mathrm{MDP}}[R;d,T,J] = \{p_r(\tau;d,T,J) \mid r \in R\}$ is identifiable up to an equivalence relation \cong if for all $r, \hat{r} \in R$,

$$r \cong \hat{r} \iff p_r = p_{\hat{r}}$$

Definition: Weak Identifiability

Definition 3. (Weak Identifiability) An MDP model $\mathcal{P}_{MDP}[R; d, T, J]$ is weakly identifiable if it is identifiable up to \cong_{τ} , i.e trajectory equivalence.

Trajectory Equivalence

$$r \cong_{\tau} \hat{r} \iff \forall x \in \mathcal{X}^{0}, \tau', \tau'' \in \Omega[x, d, T],$$
$$\hat{r}(\tau') - r(\tau') = \hat{r}(\tau'') - r(\tau'')$$

Definition 4. (Strong Identifiability) An MDP model is strongly identifiable if it is identifiable up to rewards shifted by a constant, i.e $\cong_{x,a}$.

State-action Equivalence

$$r \cong_{x,a} \hat{r} \iff \forall (x',a'), (x'',a'') \in \mathcal{X} \times \mathcal{A},$$
$$\hat{r}(x',a') - r(x',a') = \hat{r}(x'',a'') - r(x'',a'')$$

Proposition 1. A proper MDP model is strongly identifiable only if it is weakly identifiable

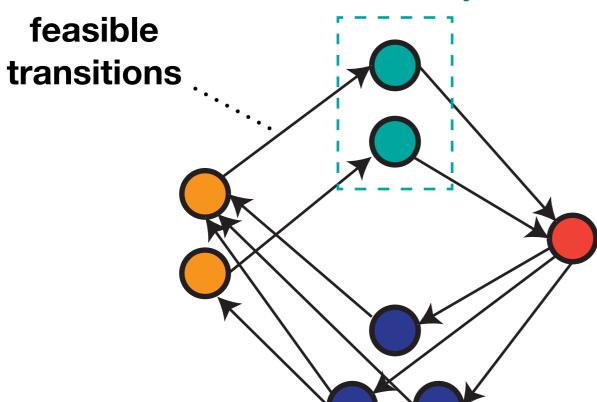
Theorem: Weak Identification

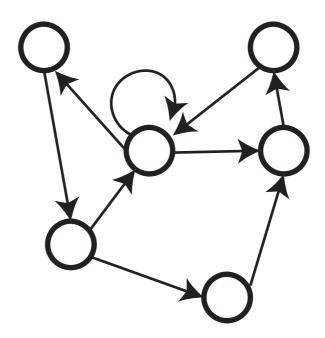
Theorem 1. Let $\mathcal{P}_{\mathrm{MDP}}[R;d,T,J_{\mathrm{MaxEnt}}]$ be a MaxEnt MDP model and $R\subseteq\{r\mid r:\mathcal{X}\times\mathcal{A}\to\mathbb{R}\}$ be any set of rewards. Then, for all domains $d:=(\mathcal{X},\mathcal{A},P,P_0,\gamma)$ consisting of deterministic transition dynamics, i.e $\forall (x,a),|\mathrm{supp}(P(\cdot|x,a))|=1$, a deterministic initial state, i.e $|\mathrm{supp}(P_0)|=1$, and $T\geq 0$, $\mathcal{P}_{\mathrm{MDP}}[R;d,T,J_{\mathrm{MaxEnt}}]$ is weakly identifiable.

TLDR: Deterministic, MaxEnt MDP models are weakly identifiable regardless of the domain properties

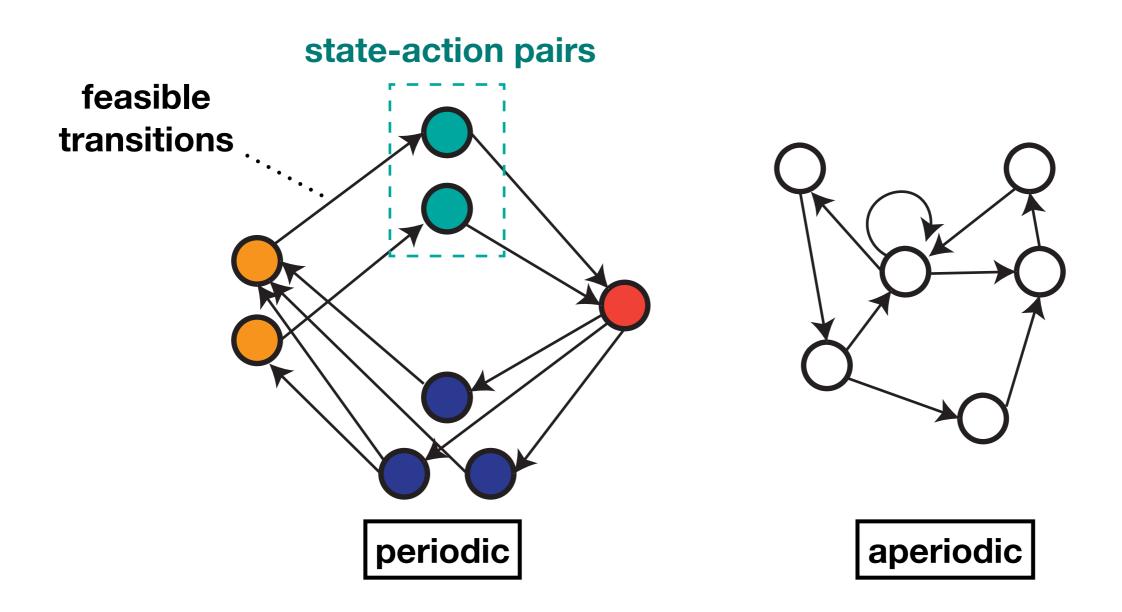
Domain Graphs

state-action pairs





Domain Graphs



A domain graph is aperiodic if the GCD of the periods of all cycles in the graph is 1, and periodic otherwise

Theorem: Strong Identification

Corollary 2. (Strong Identification Condition) For all (d, r, T, J) such that $\mathcal{P}_{\text{MDP}}[R; d, T, J]$ is a proper MDP model and G_d is strongly connected,

- (Sufficiency) $\mathcal{P}_{\text{MDP}}[R;d,T,J]$ is weakly identifiable, G_d aperiodic $\Rightarrow \exists T_0 \geq 0$ such that $\forall T \geq T_0, \mathcal{P}_{\text{MDP}}[R;d,T,J]$ is strongly identifiable
- (Necessity) $\mathcal{P}_{\text{MDP}}[R; d, T, J]$ is strongly identifiable \Rightarrow $\mathcal{P}_{\text{MDP}}[R; d, T, J]$ is weakly identifiable, G_d is aperiodic.

TLDR: MDP Models with Aperiodic Domain Graphs are Strongly Identifiable

Algorithms for Identification Testing

Algorithm 1 Strong Identifiability Test for MDP models with Strongly Connected Domain Graphs

Acknowledgements

