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We perform approximate inference of the highest fidelity in Bayesian neural nets.

We answer many questions in Bayesian deep learning, often contradicting
conventional wisdom:

? Do BNNs perform well in practice?
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We answer many questions in Bayesian deep learning, often contradicting
conventional wisdom:

? Do BNNs perform well in practice?
? Do we need cold posteriors?
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? Do BNNs perform well in practice?
¢ Do we need cold posteriors?
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We answer many questions in Bayesian deep learning, often contradicting
conventional wisdom:

? Do BNNs perform well in practice?

¢ Do we need cold posteriors?

? Are BNNs robust to covariate shift?
? What is the effect of priors in BNNs?
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Overview

We perform approximate inference of the highest fidelity in Bayesian neural nets.

We answer many questions in Bayesian deep learning, often contradicting
conventional wisdom:

? Do BNNs perform well in practice?

¢ Do we need cold posteriors?

? Are BNNs robust to covariate shift?

? What is the effect of priors in BNNs?

? How good are different approximate inference methods?
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Bayesian inference is especially compelling for
deep neural networks!
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Bayesian inference is especially compelling for

deep neural networks!

Bayesian inference is intractable for BNNs!
Have to do approximate inference
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Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from



Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from

start at prev. sample




Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from

start at prev. sample random momentum




Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from

start at prev. sample random momentum simulate dynamics




Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from

start at prev. sample random momentum simulate dynamics accept / reject




Hamiltonian Monte Carlo

Simulating the dynamics of a particle sliding on the plot of the log-density
function that we are trying to sample from

start at prev. sample random momentum simulate dynamics accept / reject

+ Asymptotically exact - Requires exact gradients
+ Well-studied and understood - Generally expensive
+ Has been used in early BNNs



Computational complexity of HMC

Do the inference as accurately as possible, ignoring scalability and practicality

e Most recent papers on BNNs do no more than 1-5 thousand epochs
e For example, to approximate the posterior of a ResNet-20 on CIFAR-10 we
spend 60 million epochs of compute



Computational complexity of HMC

Do the inference as accurately as possible, ignoring scalability and practicality

e Most recent papers on BNNs do no more than 1-5 thousand epochs
e For example, to approximate the posterior of a ResNet-20 on CIFAR-10 we
spend 60 million epochs of compute

To cope with extreme compute requirements we
run HMC on 512 TPUS!




How well is HMC mixing?
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How well is HMC mixing?

P between-chain variance

avg within-chain variance

Most R are close to 1, especially
in function space!
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Q1: Do BNNs perform well in practice?
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HMC BNNs outperform deep ensembles at temperature 7=1!




Q2: Do we need cold posteriors?

1/T

pr(w|D) « (p(DPlw) - p(w))

Cold posteriors effect by Wenzel et al: cold posteriors (temperatures T << 1) are
needed to achieve good performance with BNNs

T=1 Log Likelihood T=10 Log Likelihood T =0.1 Log-Likelihood

s |

—4 -3 =2 1 —55 —-45 -35 -25 151 -12 -9 —6 -3 0

Cold posteriors — sharper distribution, concentrated on high-density points


https://arxiv.org/abs/2002.02405

Q2: Do we need cold posteriors?

e We have already seen that BNNs can do well at T=1
e \What is the effect of T then?
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What's the difference with Wenzel et al.?

e Results using the original code of Wenzel et al. on CIFAR-10:
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With no data augmentation, there is no cold posteriors effect.


https://arxiv.org/abs/2002.02405
https://arxiv.org/abs/2002.02405

Q3: Are BNNs robust to covariate shift?

Train on CIFAR-10, test on CIFAR-10-C:
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Q3: Are BNNs robust to covariate shift?

Train on CIFAR-10, test on CIFAR-10-C:
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HMC BNNs are terrible on corrupted data!



Q3: Are BNNs robust to covariate shift?

See “Dangers of Bayesian model averaging under covariate shift” by
|Izmailov, Nicholson, Lotfi, Wilson for a detailed explanation
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Q3: Are BNNs robust to covariate shift?

See “Dangers of Bayesian model averaging under covariate shift” by
|Izmailov, Nicholson, Lotfi, Wilson for a detailed explanation
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Q4: What is the effect of priors in BNNs?

Consider priors of the form N0, &*1).
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Q4: What is the effect of priors in BNNs?

Consider priors of the form N0, &*1).
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e High-variance Gaussian priors lead to strong performance
e The results are robust with respect to the prior scale



Q5: How good are approximate inference methods?

We compare the predictions of HMC to that of scalable BDL methods.
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All scalable methods make predictions distinct from HMC
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Advanced SGMCMC methods are closer to HMC than other methods



Q5: How good are approximate inference methods?

We compare the predictions of HMC to that of scalable BDL methods.
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Deep ensembles are closer to HMC than VI!



Discussion

e BNNs outperform SGD and Deep Ensembles and do not require cold
posteriors

e The cold posterior effect reported in prior work is largely an artifact of data
augmentation

e BNNs are terrible when the test data is corrupted

e Deep ensembles are making more similar predictions to HMC BNNs
compared to MFVI

We release our HMC samples! W/
We are organizing a NeurlPS 2021 competition on b oy

in Bayesian

approximate inference in BDL! Deep Learning

llllllllllllll petition



https://colab.research.google.com/drive/1EAWv7KwVPh_bw3hvJOfCNappQTQgGsh7?usp=sharing
https://izmailovpavel.github.io/neurips_bdl_competition/

