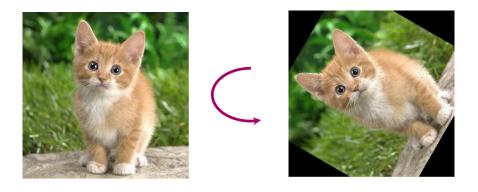
Neural Transformation Learning For Deep Anomaly Detection Beyond Images

Chen Qiu^{1,2}, Timo Pfrommer¹, Marius Kloft², Stephan Mandt³, Maja Rudolph¹

Bosch Center for Al, Germany
 Technical University Kaiserslautern, Germany
 University of California, Irvine, USA

Self-supervised anomaly detection Works great for images

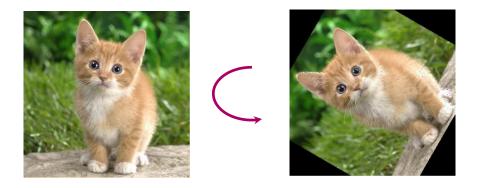


Good hand-crafted transformations help networks to learn good features for downstream tasks, including anomaly detection

[Golan & El-Yaniv, 2018; Wang et al., 2019; Chen et al., 2020; Sohn et al., 2021; Sehwag et al., 2021]

Figure from Wang et al. Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network.

Self-supervised anomaly detection Motivation



	value	unit	
height	180	cm	
weight	65	kg	

value	unit	cm
	180	kg
height	weight	65

What transformations are best suited for other types of data *beyond images?*

Neural Transformation Learning for Anomaly Detection Goals & Tasks

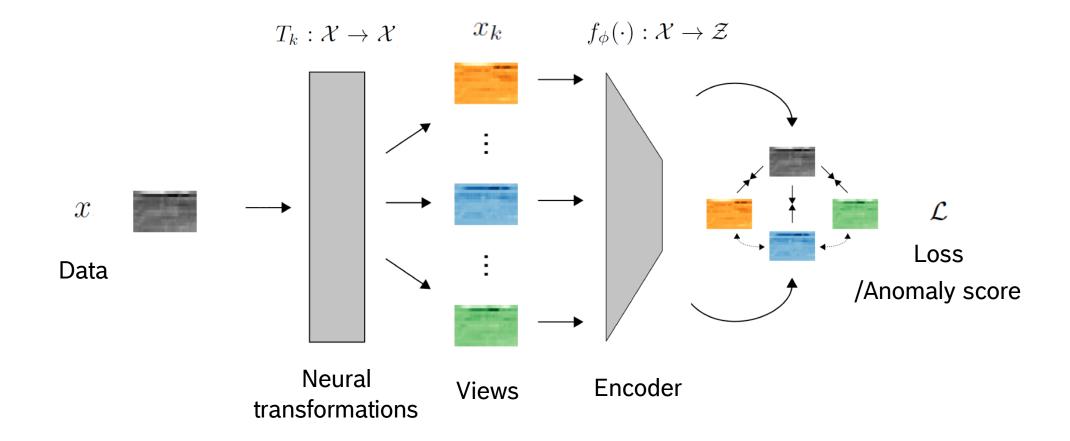
Anomaly detection on real-world time series data from various domains:

detect abnormal time series on a *whole* sequence level .

Anomaly detection on tabular data from medical and cyber-security domains: detect abnormal samples in a tabular form.

	Test 1	Test 2	Test 3
P1	Normal	Normal	Normal
P2	Normal	Normal	Normal
P3	Low	High	High

Neural Transformation Learning for Anomaly Detection Overview



Neural Transformation Learning for Anomaly Detection How to learn good transformations?

- Semantics: The transformations should produce views that share relevant semantic information with the original data.
- Diversity: The transformations should produce diverse views of each sample.

Photograph by Jonathan Muzikar, "Andy Warhol: Campbell's Soup Cans and Other Works, 1953-1967"

Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, Maja Rudolpl

Neural Transformation Learning for Anomaly Detection How to learn good transformations?

- Semantics: The transformations should produce views that share relevant semantic information with the original data.
- Diversity: The transformations should produce diverse views of each sample.
- ► Deterministic Contrastive Loss (DCL):

$$\mathcal{L} := \mathbb{E}_{x \sim \mathcal{D}} \left[-\sum_{k=1}^K \log rac{h(x_k, x)}{h(x_k, x) + \sum_{l
eq k} h(x_k, x_l)}
ight] \,,$$

where
$$h(x_k, x_l) = \exp(\sin(f_{\phi}(T_k(x)), f_{\phi}(T_l(x)))/\tau)$$

 $\sin(z, z') := z^T z' / ||z|| ||z'||$

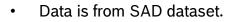
Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, Maja Rudolph © Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Neural Transformation Learning for Anomaly Detection Visualization & Insights

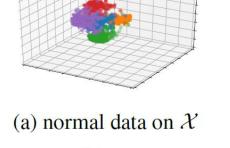
Visualization of original samples (blue) and different views in data space and in the embedding space.

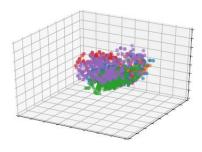
Separation of Transformations

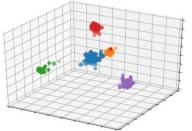
v.s. Overlap between Transformations

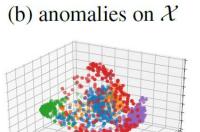


- Colors code for transformation (blue = untransformed)
- Data and embeddings are projected to 3D using PCA.



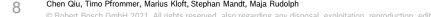






(c) normal data on $\boldsymbol{\mathcal{Z}}$

(d) anomalies on \mathcal{Z}



Neural Transformation Learning for Anomaly Detection Theoretical analysis

Does an edge-case of unsuited transformations minimize the loss?

	'Constant' edge-case $f_{\phi}(T_k(x)) = Cc_k$	'Identity' edge-case $T_k(x) = x$	Suitable?		
Classification loss [1]	\checkmark	X	X (Prop.1)		
NCE loss [2]	X	\checkmark	X (Prop.1)		
DCL (our)	X	X	✓ (Prop.3)		

[1] Golan, I. and El-Yaniv, R. Deep anomaly detection using geometric transformations. 2018[2] Chen et al. A simple framework for contrastive learning of visual representations. 2020

Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, Maja Rudolph

Neural Transformation Learning for Anomaly Detection Quantitative results on time series and tabular data

	SAD	NATOPS	СТ	EPSY	RS		Arrthythmia	Thyroid	KDD	KDDRev
OC-SVM	95.3	86.0	97.4	61.1	70.0	OC-SVM	45.8	38.9	79.5	83.2
IF	88.2	85.4	94.3	67.7	69.3	IF	57.4	46.9	90.7	90.6
LOF	98.3	89.2	97.8	56.1	57.4	LOF	50.0	52.7	83.8	81.6
RNN	81.5±0.4	89.5 ± 0.4	96.3±0.2	$80.4{\pm}1.8$	84.7±0.7	Deep SVDD	53.9 ± 3.1	70.8 ± 1.8	99.0 ± 0.1	98.6 ± 0.2
LSTM-ED	$93.1 {\pm} 0.5$	91.5 ± 0.3	79.0 ± 1.1	82.6 ± 1.7	65.4 ± 2.1	DAGMM	49.8	47.8	93.7	93.8
Deep SVDD	86.0 ± 0.1	$88.6 {\pm} 0.8$	$95.7 {\pm} 0.5$	57.6 ± 0.7	77.4 ± 0.7	GOAD	52.0 ± 2.3	74.5 ± 1.1	98.4 ± 0.2	98.9 ± 0.3
DAGMM	80.9 ± 1.2	78.9 ± 3.2	$89.8 {\pm} 0.7$	72.2 ± 1.6	51.0 ± 4.2	DROCC	46	27	-	-
GOAD	94.7 ± 0.1	87.1 ± 1.1	$97.7 {\pm} 0.1$	$76.7 {\pm} 0.4$	$79.9 {\pm} 0.6$	NeuTraL AD	60.3 ±1.1	76.8 ±1.9	99.3 ±0.1	99.1 ±0.1
DROCC	$85.8 {\pm} 0.8$	87.2 ± 1.4	$95.3 {\pm} 0.3$	85.8±2.1	80.0 ± 1.0					
fixed Ts	96.7±0.1	$78.4 {\pm} 0.4$	$97.9 {\pm} 0.1$	$80.4{\pm}2.2$	87.7 ±0.8					
NeuTraL AD	98.9 ±0.1	94.5 ±0.8	99.3 ±0.1	92.6 ±1.7	86.5 ± 0.6					

THANK YOU

Paper Link

Correspondence: <u>Chen.Qiu@de.bosch.com</u>

