Correcting Exposure Bias for Link Recommendation

Shantanu Gupta, Hao Wang, Zachary Lipton, Yuyang Wang

2021

Exposure bias and link recommendation

- Link recommender systems (RS) are applied to graph structured data.
 - Nodes represent entities like papers or persons.
 - Edges represent links between nodes (e.g. citations or connections).
- They recommend other nodes that a given node should link to based on node attributes.
- The observed graph used for training can exhibit exposure bias when users are systematically underexposed to certain items.
 - For example, authors might be more likely to encounter papers from their own field and thus cite them preferentially.
- Such systems can inherit this bias and relevant low-exposure nodes may not be recommended.

Exposure bias and link recommendation

- The dataset is in the form of a directed graph $\mathcal{G}(V, E)$.
- Link probability y_{ii}: probability that v_i links to v_i .
- Propensity score π_{ii} : probability that v_i is exposed to v_i .
- Due to the exposure a_{ii}, some true positive links are observed as negative links resulting in exposure bias.

 $o'_{ii} \sim \text{Ber}(y_{ij})$ (True link), $a_{ij} \sim \text{Ber}(\pi_{ij})$ (Exposure), $o_{ii} = o'_{ii}a_{ii}$ (Observed link).

True Risk

• True risk is the risk of the predictions \hat{y} on the graph that would have been generated if all nodes were exposed to all other nodes:

$$R(\widehat{y}) = \mathbb{E}_{o'}\left[\frac{1}{N}\sum_{(i,j)}\delta(o'_{ij},\widehat{y}_{ij})\right]$$

for some loss function δ (e.g., log-loss).

- The performance of a link RS should be evaluated on its true risk.
- True risk is different from risk on the observed graph because some negative links are false negatives.

Naive estimator of true risk

• Naively estimating the risk on observed data will result in bias, i.e.,

$$\widehat{R}_{\mathsf{naive}}(\widehat{y}) = \frac{1}{N} \sum_{(i,j)} \delta(o_{ij}, \widehat{y}_{ij})$$

is a biased estimate of $R(\widehat{y})$.

 Thus directly evaluating a link RS on the observed graph can be a misleading measure of its performance.

Estimators for mitigating exposure bias

- We propose three estimators of the true risk denoted by \widehat{R}_{w} , \widehat{R}_{PU} , and \widehat{R}_{AP} that use estimated propensity scores $(\widehat{\pi})$.
- We denote the first estimator by \widehat{R}_w :

$$\widehat{R}_{w}(\widehat{y},\widehat{\pi}) = \frac{1}{N} \sum_{(i,j)} w_{ij} \delta(o_{ij},\widehat{o}_{ij}), \text{ where}$$

$$w_{ij} = \frac{o_{ij}}{\widehat{\pi}_{ij}} + (1 - o_{ij})\psi_{ij}, \ \psi_{ij} = \frac{1 - \widehat{y}_{ij}}{1 - \widehat{\pi}_{ij}\widehat{y}_{ij}} \leq 1.$$

- The positive examples are up-weighted according to the inverse propensity. The negative examples are down-weighted.
- This estimator is unbiased if $\forall (i,j), \ \widehat{\pi}_{ij} = \pi_{ij} \ \text{and} \ \widehat{y}_{ij} = y_{ij}$.

2021 6 / 22

Estimators for mitigating exposure bias

• The second estimator \widehat{R}_{PU} is inspired by estimators from the positive-and-unlabeled setting:

$$egin{aligned} \widehat{R}_{\mathsf{PU}}(\widehat{y},\widehat{\pi}) &= rac{1}{N} \sum_{(i,j)} \left[w_{ij} \delta(o_{ij},\widehat{o}_{ij}) + w'_{ij} \delta(0,\widehat{o}_{ij})
ight], \ \end{aligned}$$
 where $w_{ij} = rac{o_{ij}}{\widehat{\pi}_{ii}} + (1-o_{ij}), \ w'_{ij} = o_{ij} \left(1 - rac{1}{\widehat{\pi}_{ii}}
ight).$

 We remove an appropriate number of negative examples for each positive example.

2021 7 / 22

Estimators for mitigating exposure bias

• The third estimator, \widehat{R}_{AP} , adds positive examples for each negative example:

$$egin{aligned} \widehat{R}_{\mathsf{AP}}(\widehat{y},\widehat{\pi}) &= rac{1}{N} \sum_{(i,j)} \left[w_{ij} \delta(o_{ij},\widehat{o}_{ij}) + w'_{ij} \delta(1,\widehat{o}_{ij})
ight], \ ext{where } w_{ij} &= o_{ij} + (1-o_{ij}) \psi_{ij}, w'_{ij} = (1-o_{ij}) au_{ij}, \ au_{ij} &= \left(rac{\widehat{y}_{ij} (1-\widehat{\pi}_{ij})}{1-\widehat{\pi}_{ii} \widehat{y}_{ii}}
ight). \end{aligned}$$

 The positive examples are up-weighted according to the inverse propensity. The negative examples are down-weighted.

Comparison of the proposed and naive estimators

- We provide sufficient conditions for when the bias of the proposed estimators is lower than that of \widehat{R}_{naive} .
- (Informal) We show that if the $\widehat{\pi}$ are not too-underestimated and \widehat{y} are not too-overestimated, the proposed estimators will have lower bias than the naive estimator.
- Thus our proposed estimators reduce bias as long as the propensities and link probabilities are learned sufficiently well.
- For all values of $\widehat{\pi}, \widehat{y}$, we have $\operatorname{Var}(\widehat{R}_{\mathsf{AP}}) < \operatorname{Var}(\widehat{R}_{\mathsf{naive}})$ and $\operatorname{Var}(\widehat{R}_{\mathsf{AP}}) < \operatorname{Var}(\widehat{R}_{\mathsf{W}}) < \operatorname{Var}(\widehat{R}_{\mathsf{PU}})$.

Learning propensities and link probabilities

Theorem (Generalization bound)

Let \mathcal{F} be a class of functions $(\widehat{\pi}, \widehat{y})$. Let $\delta(o_{ij}, \widehat{y}_{ij}) \leq \eta \ \forall (i,j)$ and $\widehat{\pi}_{ij} \geq \epsilon > 0 \ \forall (i,j)$. Then, for $\widehat{R} \in \left\{\widehat{R}_w, \widehat{R}_{PU}, \widehat{R}_{AP}\right\}$, with probability at least $1 - \delta$, we have

$$R(\widehat{y}) \leq \widehat{R}(\widehat{y}, \widehat{\pi}) + B(\widehat{R}) + 2\mathcal{G}(\mathcal{F}, \widehat{R}) + \mathcal{O}\left(\sqrt{\frac{2}{\delta}}\right),$$

where G is the Rademacher complexity and $B(\widehat{R})$ is the bias.

• The bound shows that w.h.p., if $\widehat{R}(\widehat{y},\widehat{\pi})$ is small and the bias $B(\widehat{R})$ is small, then the true risk is also low.

Learning propensities and link probabilities

• We learn the propensities $(\widehat{\pi})$ and link probabilities (\widehat{y}) by minimizing the following objective:

$$I(\widehat{\pi},\widehat{y}) = \lambda_L \mathcal{L}(o|\widehat{\pi},\widehat{y}) + \lambda_R \widehat{R}(\widehat{\pi},\widehat{y}), \tag{1}$$

where $\mathcal{L}(o|\widehat{y},\widehat{\pi})$ is the log-likelihood and $\widehat{R} \in \left\{\widehat{R}_{\mathsf{W}},\widehat{R}_{\mathsf{PU}},\widehat{R}_{\mathsf{AP}}\right\}$.

- The log-likelihood should ensure that the learned values are faithful to the observed data.
- The risk estimator should ensure that the true risk is small.
- We model $\widehat{\pi}$ and \widehat{y} using neural networks and optimize the objective using gradient descent.

Experiments

- We use citation data from the Microsoft Academic Graph (MAG) dataset.
- It is a real-world citation dataset that contains the citation graph and paper attributes (like text and field-of-study).
- We test our methods on a semi-synthetic dataset with 42,000 papers and two real datasets with more than 2 million and 1 million papers, respectively.

Experiments

- We use the paper title and abstract to predict the link probabilities \hat{y} .
- For each paper p_i , we generate a text embedding $h_i \in \mathbb{R}^{768}$ using a pre-trained SciBERT model.
- Then \hat{y}_{ii} is modeled as a linear predictor on those embeddings:

$$\widehat{y}_{ij} = \mathsf{Sigmoid}(\widehat{w}^{\top}(h_i \otimes h_j) + \widehat{b}),$$

where \widehat{w} and \widehat{b} are trainable parameters.

• For simplicity, we only use the field-of-study of the papers to predict $\widehat{\pi}$.

Results on semi-synthetic data

- In the real dataset, we do not have access to true exposure values.
- So we generate a semi-synthetic dataset with real paper text but simulated exposure and outcome values.
- Our methods significantly outperform No Propensity (which does not correct for exposure bias) when evaluated on true links.

Table: Evaluation metrics on the test set of the semi-synthetic data computed against known ground truth citation links.

Model	Prec.	Rec.	AUC	MAP
No Propensity	67.24	54.81	84.45	41.87
MLE	81.04	60.19	93.12	56.77
$\widehat{R}_{w} \ \widehat{R}_{ ext{PU}} \ \widehat{R}_{ ext{AP}}$	83.28	63.73	96.42	56.96
$\widehat{R}_{\mathrm{PU}}$	82.16	63.07	94.28	58.01
$\widehat{R}_{\mathrm{AP}}$	83.01	65.54	95.38	59.90

Results on semi-synthetic data

Figure: The estimated propensities propensities are close to the true simulated values when learned using R_w .

 The estimated propensities are close to the true (simulated) propensities.

Results on semi-synthetic data

• Our proposed estimators are better estimators of the true risk.

Table: RMSE of the estimated risk with respect to the true risk computed using our proposed estimators. The first column shows the risk used in the loss function in Eq. 1 to learn $\widehat{\pi}$ and \widehat{y} .

Trained Using	ESTIMATOR USED				
	$\widehat{R}_{ ext{NAIVE}}$	\widehat{R}_w	$\widehat{R}_{\mathrm{PU}}$	$\widehat{R}_{\mathrm{AP}}$	
No Prop.	1.50	-	-	-	
MLE	0.67	0.23	0.24	0.32	
\widehat{R}_w	0.43	0.04	0.10	0.11	
$\widehat{R}_{ m w} \ \widehat{R}_{ m PU}$	0.38	0.05	0.11	0.04	
$\widehat{R}_{ m AP}$	0.41	0.06	0.08	0.03	

Results on real data

- We test our methods on two distinct subgraphs of the MAG graph with 2.4 million and 1 million papers.
- Since true exposure values are not available, we evaluate the performance against observed risk.
- Performance does not substantially drop even when evaluated against the observed citation graph.

Results on Dataset 1

- Performance remains comparable to *No Propensity* even when evaluated against the observed citation graph.
- The last column is a measure of diversity in the recommended papers' fields-of-study. Our methods recommend more papers from different fields.

Table: Evaluation metrics for various models computed on the test sets of a real-world citation dataset.

Model	Prec.	Rec.	AUC	MAP	FOS ENTROPY
Dataset 1					
No Prop.	29.45	78.30	84.44	24.10	1.65
MLE	30.24	77.84	84.41	24.60	1.73
\widehat{R}_w	31.46	78.02	84.74	25.60	1.74
\widehat{R}_{w} $\widehat{R}_{\mathrm{PU}}$	30.98	78.94	85.24	25.11	1.73
$\widehat{R}_{ m AP}$	36.07	76.08	84.67	28.58	1.71

Results on Dataset 2

Table: Evaluation metrics for various models computed on the test sets of a real-world citation dataset.

Model	Prec.	REC.	AUC	MAP	FOS ENTROPY
Dataset 2					
No Prop.	44.86	70.85	83.22	33.19	1.06
MLE	44.43	74.66	84.97	34.39	1.08
\widehat{R}_w	48.70	71.62	83.90	36.25	1.12
$\widehat{R}_{w} \ \widehat{R}_{\mathrm{PU}}$	42.17	76.15	85.43	33.26	1.08
$\widehat{R}_{ m AP}$	47.22	71.84	83.89	35.27	1.10

Feedback loops

- We analyze the setting when a RS is repeatedly trained on data generated by users interacting with its recommendations.
- In this setting, the users are only exposed to items that are recommended and only form links with those items.
- We show that feedback loops arise which worsen exposure bias over time.
- Items with low propensity are recommended less often as time goes on.

Feedback loops

Figure: Feedback loops can exacerbate exposure bias.

- We run a simulation on citation data with only two fields-of-study.
- When we do not correct for exposure bias, the fraction of papers recommended from the same field increases over time (Figure (a)).
- When we correct for exposure bias, the fraction of papers recommended from the same field remains stable over time (Figure (b)).

Thank You