

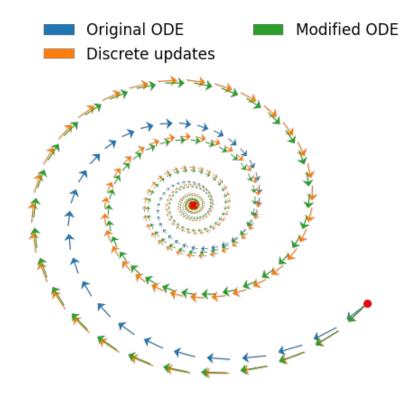
Discretization Drift in Two-Player Games

Mihaela Rosca, Yan Wu, Benoit Dherin, David Barrett

Quantify discretization drift in two-player games trained using gradient descent. Quantify discretization drift in two-player games trained using gradient descent.

Use it as a framework to understand and improve two-player games (e.g. GANs).

Modified ODEs which better describe the discrete updates.



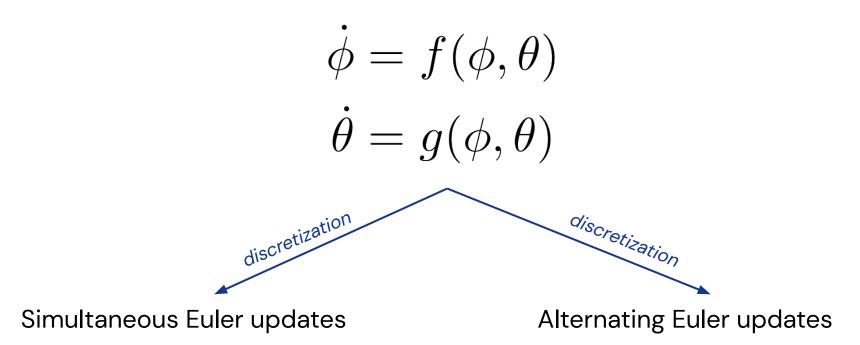
Modified ODEs which better describe the discrete updates

- Stability analysis.
- Explicit regularization to cancel harmful forms of drift and improve GAN training.
- Understand the difference between simultaneous and alternating gradient descent.

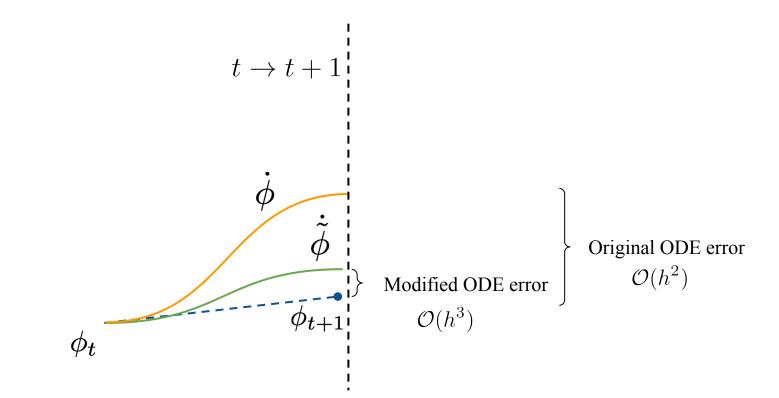
Two-player games

 $\dot{\phi} = f(\phi, \theta)$ $\dot{\theta} = g(\phi, \theta)$

Two-player games



Backward error analysis



Approach introduced in supervised learning by David Barrett and Benoit Dherin: *Implicit gradient regularization, ICLR 2021*.

Modified ODEs: Simultaneous Euler updates

Discrete dynamics

Backward error analysis Continuous dynamics

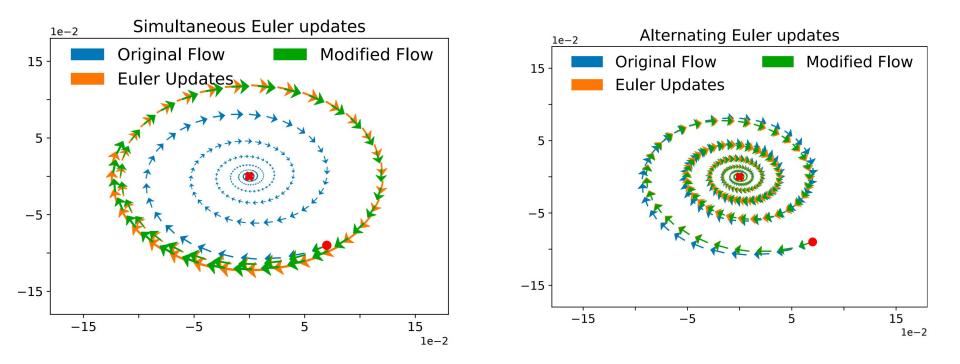
Self and interaction terms.

Modified ODEs: Alternating Euler updates

Discrete dynamics Backward error analysis Continuous dynamics

Self and interaction terms.

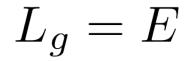
Stability analysis using the modified ODEs



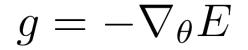
Stability analysis using the modified ODEs

- Does not ignore discretization drift
- Accounts for the different behaviour of simultaneous and alternating updates

 $L_f = -E$



 $f = \nabla_{\phi} E$

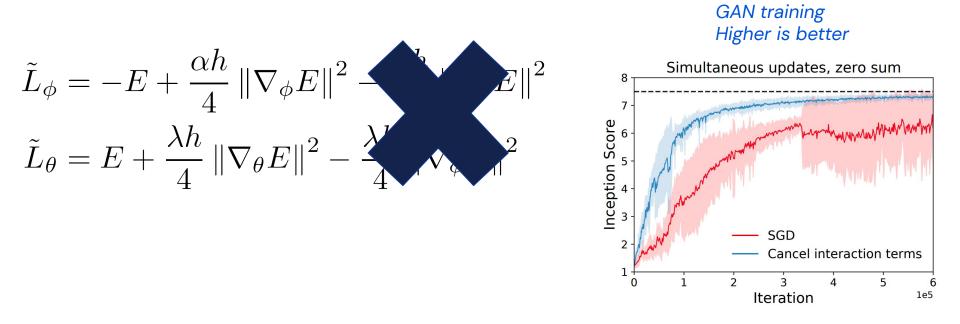


Simultaneous gradient descent in zero-sum games

$$\tilde{L}_{\phi} = -E + \frac{\alpha h}{4} \left\| \nabla_{\phi} E \right\|^{2} - \frac{\alpha h}{4} \left\| \nabla_{\theta} E \right\|^{2}$$
$$\tilde{L}_{\theta} = E + \frac{\lambda h}{4} \left\| \nabla_{\theta} E \right\|^{2} - \frac{\lambda h}{4} \left\| \nabla_{\phi} E \right\|^{2}$$

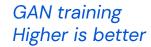
The *interaction terms* maximize the gradient norm of the other player.

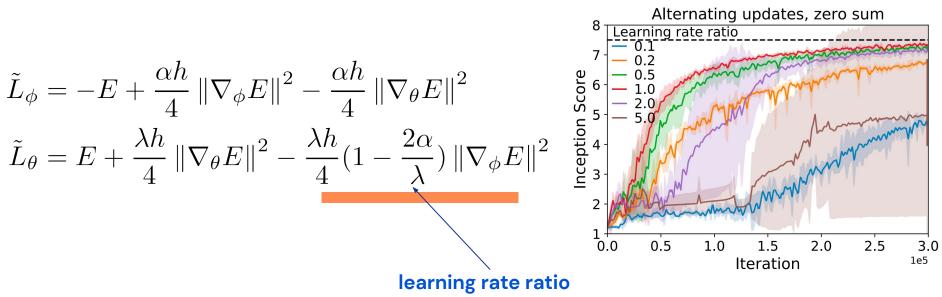
Simultaneous gradient descent in zero-sum games



Explicit regularization cancelling the interaction terms improves performance

Alternating gradient descent in zero sum games





We can predict which learning rate ratios will perform best!

Quantifying discretization drift in two-player games via modified ODEs is a useful theoretical and empirical tool.