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Introduction

– In regression, learning a generic Lipschitz function in
dimension d up to error ε requires a number of samples
of order ε−Ω(d): curse of dimensionality!

– If the target function has certain k-dimensional
structure, then only ε−O(k) are needed [Bach, 2017].

– In our work, we develop similar adaptivity results for
the task of learning distributions via energy-based
models.
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Background: generative modeling

– Central problem in ML: to learn generative models of a
distribution through its samples.

– One approach: implicit generative modeling.
Black-box, no meaningful estimates computed, e.g.
GANs, normalizing flows.

– Another approach: explicit generative modeling.
Estimates of the density/energy computed and used to
generate samples, e.g energy-based models (EBMs).
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Background: EBMs (1)

– Let K ⊆ Rd+1 with base probability measure τ .

– EBMs: learned models are Gibbs measures νf ∈ P(K )
defined through an energy function f : K → R, with a
density proportional to exp(−f (x)):

dνf
dτ

(x) :=
e−f (x)

Zf
, with Zf :=

∫
K

e−f (y)dτ(y) .

– Given samples {xi}ni=1 from a target measure ν,
training an EBM consists in selecting the best νf with
energy f within a certain function class F , according to
a given criterion.
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Background: EBMs (2)

Figure: 3D synthetic EBM experiments.

Figure: ImageNet 32x32 EBM samples
from [Du and Mordatch, 2019].
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Background: Overparametrized shallow NN

Two-layer overparametrized NN spaces provide a
simplified and manageable framework to study neural
networks.

They come in two flavors [Bach, 2017]:

– Feature learning regime: F1 or Barron
space [Barron, 1993]. Features are learned, weak
theoretical optimization guarantees (works well in
practice).

– Kernel regime: F2 space. Features are fixed, it is an
RKHS, smaller than F1, optimization has guarantees.
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Contributions of the paper
We study the statistics of learning EBMs with
overparametrized shallow NN energies (F1 and F2):

1. Generalization bounds for the learned measures in
terms of training metrics (maximum likelihood, Stein
discrepancies).

2. Adaptivity to low-dimensional structure: for
energies in F1, target measures with low-dimensional
structure can be learnt at a rate controlled by the
intrinsic dimension, not the ambient dimension.

3. Separation between F1 and F2: experimentally,
F1 energies can learn simple synthetic distributions
with planted NN energies, F2 energies fail.
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Framework: Maximum likelihood
– A natural estimator f̂ for the energy is the maximum
likelihood estimator (MLE), i.e.,
f̂ = argmaxf ∈F

∏n
i=1

dνf
dτ (xi).

– Equivalently, f̂ minimizes the cross-entropy with the
samples:

f̂ = argmin
f ∈F

H(νn, νf ) = argmin
f ∈F

−1

n

n∑
i=1

log

(
dνf
dτ

(xi)

)
= argmin

f ∈F

1

n

n∑
i=1

f (xi) + log Zf .

– The estimated distribution is simply νf̂ , and samples
can be obtained by the MCMC algorithm of choice.
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Framework: NN energy classes (1)

We focus on two different energy classes F . From now
on, σ(x) = max{0, x} is the ReLu activation.

Feature learning regime:

– Define F1 as the Banach space of functions f : K → R
such that for all x ∈ K we have
f (x) =

∫
Sd σ(〈θ, x〉) dγ(θ), for some signed Radon

measure γ ∈M(Sd).

– The norm of F1 is defined as
‖f ‖F1

= inf
{
|γ|TV | f (·) =

∫
Sd σ(〈θ, ·〉) dγ(θ)

}
. | · |TV is

the total variation norm.

– F is the ball BF1
(β) of radius β > 0 of F1.
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Framework: NN energy classes (2)

Kernel regime:

– Define F2 as the RKHS of functions f : K → R such
that for some h ∈ L2(Sd , τ), we have that for all x ∈ K ,
f (x) =

∫
Sd σ(〈θ, x〉)h(θ) dτ(θ).

– The RKHS norm of F2 is defined as
‖f ‖F2

= inf
{
‖h‖L2(Sd ,τ) | f (·) =

∫
Sd σ(〈θ, ·〉)h(θ) dτ(θ)

}
where ‖h‖2

L2(Sd ,τ) :=
∫
Sd |h(θ)|2 dτ(θ).

– F is the ball BF2
(β) of radius β > 0 of F2.
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Framework: NN energy classes (3)

Quick facts:

– Cauchy-Schwarz inequality =⇒ F2 ⊂ F1 and
BF2

(β) ⊂ BF1
(β).

– [Bach, 2017] shows that single ReLU units belong to
F1 but not to F2, and their L2 approximations in F2

have exponentially high norm in the dimension.

– The ball radius β determines the expressiveness.
β >> 1 =⇒ expressive models with lower
approximation error but higher statistical error.
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Statistical guarantees for MLE EBMs

Theorem

– Assume that the class Fβ has a (distribution-free)
Rademacher complexity bound Rn(Fβ) ≤ βC√

n
and L∞

norm unif. bounded by β.
– Given samples {xi}ni=1 from the target measure ν,
consider the MLE ν̂ := νf̂ .

– If dν
dτ (x) ∝ e−g(x) for some g : K → R, i.e. −g is the

log-density of ν up to a constant term, then with
probability at least 1− δ,

DKL(ν||ν̂) ≤ 4βC√
n

+ β

√
8 log(1/δ)

n︸ ︷︷ ︸
statistical error

+ 2 inf
f ∈Fβ

‖g − f ‖∞︸ ︷︷ ︸
approximation error

.
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Adaptivity of MLE to low-dimensional structure (1)

Assumption (Low-dimensional structure)

– Let K = K0 × {R}, where K0 ⊆ {x ∈ Rd |‖x‖2 ≤ R}.

– Suppose the target probability measure ν is absolutely
continuous w.r.t. τ , with energy
− log

(
dν
dτ (x ,R)

)
=
∑J

j=1 φj(Ujx), where

I φj are (ηR−1)-Lipschitz continuous functions on the
R-ball of Rk such that ‖φj‖∞ ≤ η,

I and Uj ∈ Rk×d with orthonormal rows.

Shallow NN models with Lipschitz activation satisfy the
assumption with k = 1!
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Adaptivity of MLE to low-dimensional structure (2)

Corollary

Let Fβ = BF1
(β). Assume that the low-dimensional

structure assumption holds. Then, we can choose β > 0
such that with probability at least 1− δ, the MLE
ν̂ := νf̂ fulfills

DKL(ν||ν̂) ≤ Õ
((

1 +
√

log(1/δ)
)
JηR−

2
k+3n−

1
k+3

)
where the notation Õ indicates that we overlook
logarithmic factors and constants depending only on the
dimension k.
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Adaptivity of MLE to low-dimensional structure (3)

DKL(ν||ν̂) ≤ Õ
((

1 +
√

log(1/δ)
)
JηR−

2
k+3n−

1
k+3

)
– Idea of the proof: Leverage low-dimensional
structure to show inf f ∈BF1(β) ‖g − f ‖∞ is

O
(
C (k)Jη (Rβ/ηJ)−2/(k+1)

)
using spherical harmonics

arguments from [Bach, 2017]. Find β with the optimal
tradeoff between statistical and approximation error.

– Why is this result relevant? Without additional
structure, the approximation error inf f ∈BF1(β) ‖g − f ‖∞
goes as n−O(1/d) =⇒ DKL(ν||ν̂) would go as n−O(1/d).
Curse of dimensionality ! We would need n = ε−Ω(d)

samples to get test error ε.
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Algorithms

Algorithms for F = BF1
(β):

We switch from a constrained problem to a lifted,
penalized problem:

inf
µ∈P(Rd+2)

F (µ) := R

(∫
Φ(w , θ)dµ

)
+ λ

∫
(|w |2 + ‖θ‖22) dµ,

where R is the cross-entropy or SD loss. We discretize µ
and train by gradient descent:
G ((w (i), θ(i))mi=1) := F

(
1
m

∑m
i=1 δ(w (i),θ(i))

)
=

R
(

1
m

∑m
i=1 Φ(w (i), θ(i))

)
+ λ

m

∑m
i=1(|w (i)|2 + ‖θ(i)‖2

2).

Algorithms for F = BF2
(β): Same discretization, but

training only w (i) and keeping θ(i) (random features
kernel discretization).
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Experimental setup

– We illustrate our theory on simple synthetic datasets
generated by teacher models with energies
f ∗(x) = 1

J

∑J
j=1 w

∗
j σ(〈θ∗j , x〉), with θ∗j ∈ Sd−1 for all j .

– We train models with (i) maximum likelihood, (ii)
F1-SD, (iii) KSD.

– We evaluate test error in KL divergence and the
corresponding training metric (if different from maximum
likelihood).
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Experiments in d = 15 with one planted neuron
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Figure: Test metrics obtained for MLE, KSD and F1-SD training on a
one-neuron teacher with positive output weight.
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Experiments in d = 15 with two planted neurons
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Figure: Test metrics obtained for MLE, KSD and F1-SD training on a
two-neuron teacher with negative output weights.
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Experiments in d = 15 with four planted neurons
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Figure: Test metrics obtained for MLE, KSD and F1-SD training on a
four-neuron teacher with weights w∗1 ,w

∗
2 = 7.5 and w∗3 ,w

∗
4 = −7.5.
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Experiments in d = 3 with two planted neurons (1)

Figure: 3D visualization of the neuron positions, energies and densities, in
d = 3. The teacher model has two neurons with negative weights
w∗1 ,w

∗
2 = −2.5, whose positions are represented by black sticks in all the

images. The positions of the neurons of the trained model are represented by
blue and orange sticks for negative and positive weights, resp.
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Experiments in d = 3 with two planted neurons (2)
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Figure: Log-log plot of the KL divergence between the MLE trained model and
the teacher model (same as in 6), versus the iteration number.
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Conclusions and discussion

– We provide statistical error bounds for EBMs trained
with KL divergence or Stein discrepancies.

– We show adaptivity to low dimensional structures for
feature learning overparametrized NN energies.

– Possible statistical improvement: show lower bounds
for F2 EBMs to prove theoretical separation.

– Possible computational improvements: computational
guarantees for optimization / alternative algorithms (see
[Domingo-Enrich et al., 2021]).
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