

Augmented World Models

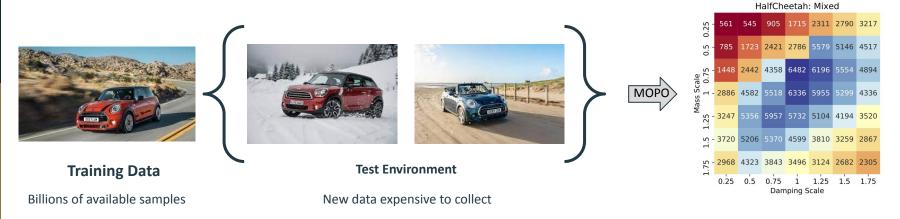
Philip Ball*, Cong Lu*, Jack Parker-Holder, Stephen Roberts

Summary of Main Contributions

- Dynamics augmentation for offline RL, allowing us to be robust to changing dynamics **training only on a single setting**.
- Propose a simple **self-supervised context adaptation** algorithm, significantly increasing zero-shot performance.
- Both approaches offer **significant improvement** v.s. SotA methods.

Offline reinforcement learning

We work with model-based Dyna-style offline RL. But what if the test environment differs from the training environment?

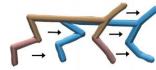


Question: Can we generalize with just the training data?

Can we have our (Le) Cake and eat it?

Problem: We only have one set of dynamics in our offline dataset.

Idea: Augment the dynamics, to produce a variety of random settings for our agent to train on.



(a) World Model: \widehat{P}

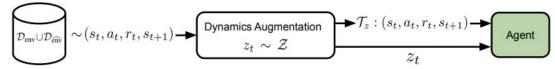
(b) Augmented World Model: \widehat{P}_z

(c) Test: P^*

The augmentation that worked best was Dynamics Amplitude Scaling (DAS):

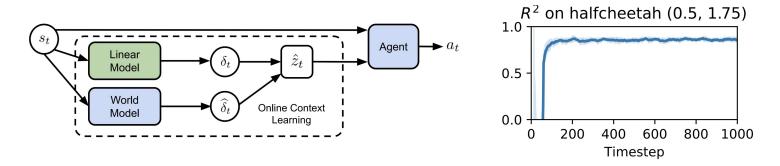
$$\mathcal{T}_z: (s_t, a_t, r_t, s_{t+1}) \mapsto (s_t, a_t, r_t, s_t + z \odot \delta_t)$$

The AugWM training approach:



Augmentations & Linear Context Learning

This augmentation is passed to the policy as a context, and then recovered via a linear model at test-time!



Can AugWM improve zero-shot generalisation?

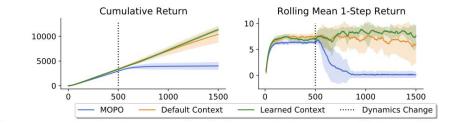
Dataset Type	Environment	МОРО	AugWM (Ours)
Random Random	HalfCheetah Walker2d	$2303 \pm 112 \\ 569 \pm 103$	$\begin{array}{c} 2818 \pm 197 \star \\ 706 \pm 139 \end{array}$
Mixed Mixed	HalfCheetah Walker2d	$\begin{array}{c} 3447 \pm 218 \\ 946 \pm 95 \end{array}$	$3948 \pm 122 \star \\ 1317 \pm 206 \star$
Medium Medium	HalfCheetah Walker2d	$2954 \pm 89 \\ 1477 \pm 337$	$2967 \pm 106 \\ 1614 \pm 440$
Med-Expert Med-Expert	HalfCheetah Walker2d	$1590 \pm 766 \\ 1062 \pm 334$	$\begin{array}{c} 2885 \pm 432 \star \\ 2521 \pm 316 \star \end{array}$

Standard D4RL with mass/damping

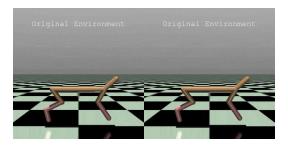
More complex	
environments	

Setting	MOPO	AugWM (Default)	AugWM (LM)
Ant: Mass/Damp	1634	1715	1804
Ant: One Crippled Leg	1370	1572	1680
Ant: Two Crippled Legs	700	697	795
HalfCheetah: Big	4891	5194	4968
HalfCheetah: Small	5151	5488	5263

Adaptation during an episode



AugWM agents are more *robust* and can *adapt* to changes in test-time dynamics



Left = MOPO, Right = AugWM.

Discussion

- We present Augmented World Models (AugWM), which:
 - Introduces the offline -> online changed dynamics problem
 - Makes the agent more robust
 - Improves zero-shot generalization
- In future:
 - Investigate meta-learning for few-shot learning
 - Additional non-stationary test-time environments
 - Pixel-based tasks with latent states