# Whittle Networks: A Deep Likelihood Model for Time Series







Zhongjie Yu<sup>1</sup>



Fabrizio Ventola<sup>1</sup>



Kristian Kersting<sup>1,2</sup>

<sup>1</sup>Department of Computer Science, TU Darmstadt, Germany <sup>2</sup>Centre for Cognitive Science, TU Darmstadt, and Hessian Center for AI {vu, ventola, kersting}@cs.tu-darmstadt.de











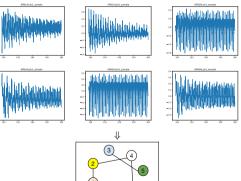


#### A Real World Motivation Multivariate Time Series Analysis on the Edge





#### sensor data from wind turbine





# **Multivariate Time Series and Graphical Models**

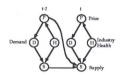


TECHNISCHE UNIVERSITÄT DARMSTADT

Limitations of time series graphical models (TGMs)<sup>[1,2,3]</sup>:

- · Inference is exponential in the worst case
- · Sample size required for accurate learning is also exponential
- · Learning requires inference as subroutine i.e. can take exponential time

 $\Rightarrow$  In other words, TGMs are intractable!





[1] Tank, A., Foti, N. J., and Fox, E. B. Bayesian structure learning for stationary time series. In UAI, 2015.

[2] Dahlhaus, R. Graphical interaction models for multivariate time series. Metrika, 2000.

[3] Bach, F. R. and Jordan, M. I. Learning graphical models for stationary time series. IEEE Transactions on Signal Processing, 2004.

# **Multivariate Time Series and Graphical Models**



TECHNISCHE UNIVERSITÄT DARMSTADT

#### We propose:

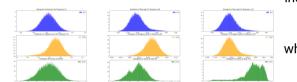
- The first tractable probabilistic circuit for modeling the joint distribution of multivariate time series, called Whittle sum-product networks (WSPNs), by introducing complex-valued SPNs.
- Deep likelihood functions for training deep neural networks for time series in an end-to-end fashion, called Whittle Networks.



# Why Whittle Likelihood?







Time series statistics

The Fourier coefficients (real and imaginary parts) follow Gaussian distribution while the time series in the time domain at each step could follow an arbitrary distribution

Whittle approximation<sup>[4]</sup> – the Fourier coefficients from discrete Fourier transform are independent complex normal distributed:

$$d_{n,k} \sim \mathcal{N}(0, \mathcal{S}_k), \quad k = 0, \dots, T-1$$

where  $S_k$  is the spectral density matrix:

$$S_k = \sum_{h=-\infty}^{\infty} \Gamma(h) \mathrm{e}^{-i\lambda_k h}$$

Thus, the Whittle likelihood given *N* independent realizations is defined as:

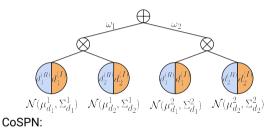
$$\prod_{n=1}^{N} \prod_{k=0}^{T-1} \frac{1}{\pi^{p} |S_{k}|} e^{-d_{n,k}^{*} S_{k}^{-1} d_{n,k}}$$
(1)

[4] Whittle, P. The analysis of multiple stationary time series. Journal of the Royal Statistical Society: Series B (Methodological), 1953.



# Whittle Sum-Product Networks





• using pairwise Gaussian leaf nodes to model complex random variables

 using an adapted non-parametric independence test for structure learning<sup>[5]</sup>

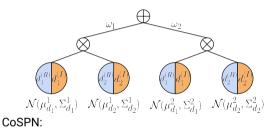
[5] Gens, R. and Domingos, P. Learning the Structure of Sum- Product Networks. ICML, 2013.

The Whittle Approximation applies for stationary time series. What about non-stationary time series?



### Whittle Sum-Product Networks





 using pairwise Gaussian leaf nodes to model complex random variables

 using an adapted non-parametric independence test for structure learning<sup>[5]</sup>

[5] Gens, R. and Domingos, P. Learning the Structure of Sum- Product Networks. ICML, 2013.

The Whittle Approximation applies for stationary time series. What about non-stationary time series?

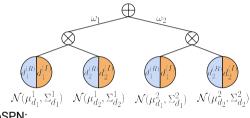
We propose the following relaxations for general time series

- The mean of each frequency need not be 0
- The Fourier coefficients of different frequencies need not be independent



### Whittle Sum-Product Networks





CoSPN:

• using pairwise Gaussian leaf nodes to model complex random variables

The Whittle Approximation applies for stationary time series. What about non-stationary time series?

We propose the following relaxations for general time series

- The mean of each frequency need not be 0
- The Fourier coefficients of different frequencies need not be independent

# using an adapted non-parametric independence WSPN: CoSPN which jointly models the Fourier test for structure learning<sup>[5]</sup> coefficients of time series

[5] Gens, R. and Domingos, P. Learning the Structure of Sum- Product Networks. ICML, 2013.

#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### **Experiments** Probabilistic Modeling of Time Series

|           |         | LearnSPN  | WSPN-Pair | WSPN-2d   | ResSPN   | ResWSPN-Pair | ResWSPN-2d | MADE         |
|-----------|---------|-----------|-----------|-----------|----------|--------------|------------|--------------|
| Sine      | train ↑ | -0.47     | 2.65      | 6.67      | -60.62   | -148.48      | -135.94    | -105.91      |
|           | test ↑  | -0.75     | 1.85      | 5.75      | -63.13   | -150.90      | -138.86    | -108.64      |
|           | 0od ↓   | $-\infty$ | $-\infty$ | $-\infty$ | -5880.85 | -4010.04     | -4227.18   | -11646865.93 |
| MNIST     | train ↑ | 256.11    | 272.84    | 277.50    | 249.47   | 254.46       | 254.30     | 336.03       |
|           | test ↑  | 254.99    | 270.40    | 274.42    | 245.67   | 251.74       | 252.54     | 327.22       |
|           | 0od ↓   | 125.19    | 160.29    | 155.76    | 204.93   | 218.25       | 216.01     | 136.98       |
| Billiards | train ↑ | 54.73     | 63.75     | 65.01     | -367.83  | -318.10      | -213.13    | -204.23      |
|           | test ☆  | 52.80     | 54.14     | 54.12     | -377.38  | -324.78      | -219.04    | -252.51      |
|           | 0od ↓   | -1984.38  | -2348.57  | -2435.70  | -1003.49 | -1052.21     | -2113.68   | -89521.82    |
| S&P       | train ↑ | -191.64   | 113.06    | 174.45    | 308.22   | 194.57       | 1831.91    | 359.52       |
| Stock     | train 🏠 | -615.76   | 328.90    | 417.81    | 257.03   | 496.07       | 1172.85    | 639.10       |

#### WSPNs capture densities over time series better than baselines!



#### **Experiments** Probabilistic Modeling of Time Series



TECHNISCHE UNIVERSITÄT DARMSTADT











#### **Experiments** Probabilistic Modeling of Time Series



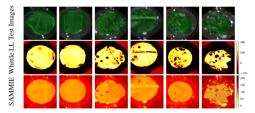














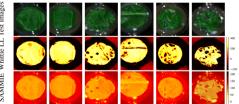
#### **Experiments** Probabilistic Modeling of Time Series

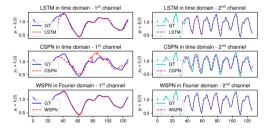












WSPNs are great for time series modeling and forecasting!



Test Images SAMMIE Whittle LL

# Extracting Conditional Independence Structure of Time Series



TECHNISCHE UNIVERSITÄT DARMSTADT

For directed acyclic graphs (DAGs):

$$p(X_{1:N} \mid G, Co) \approx \prod_{n=1}^{N} \frac{\prod_{v_i \in V} p(d_n^{\{v_i \cup Pa_G(v_i)\}} \mid Co)}{\prod_{v_i \in V} p(d_n^{\{Pa_G(v_i)\}} \mid Co)}$$

For undirected graphs:

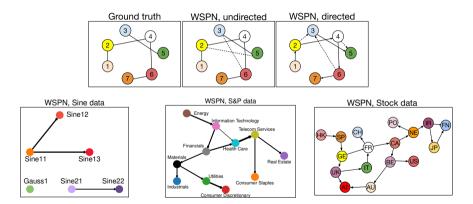
$$p(X_{1:N} \mid G, Co) \approx \prod_{n=1}^{N} \frac{\prod_{c_i \in C} p(d_n^{\{c_i\}} \mid Co)}{\prod_{s_i \in S} p(d_n^{\{s_i\}} \mid Co)}$$



#### Experiments Conditional Independence Structure





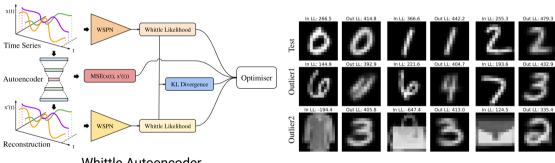


WSPNs can successfully extract the conditional independence of time series components!



#### Whittle Networks **Providing Meaningful Probabilities to Deep Neural Networks**





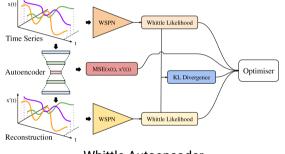
Whittle Autoencoder



#### Whittle Networks Providing Meaningful Probabilities to Deep Neural Networks







Whittle Autoencoder

|          | WSPN Input | WSPN Output |
|----------|------------|-------------|
| train    | 295.49     | 411.32      |
| test     | 295.22     | 411.10      |
| outlier1 | 239.78     | 401.54      |
| outlier2 | 48.84      | 397.58      |

Whittle Networks can provide meaningful probabilities for deep neural networks!



#### Conclusion



We introduce:

- · CoSPN The first complex-valued SPN for modeling complex random variables
- WSPN The first tractable probabilistic circuit for modeling the joint distribution of multivariate time series, exploiting the Whittle approximation
- · Conditional independence structure can be extracted efficiently from WSPNs
- · Whittle Networks meaningful probabilities for deep neural networks







# Zhongjie Yu yu@cs.tu-darmstadt.de

# Fabrizio Ventola

#### ventola@cs.tu-darmstadt.de

# Kristian Kersting kersting@cs.tu-darmstadt.de

AIML lab



https://www.aiml.informatik.tu-darmstadt.de





https://github.com/ml-research/WhittleNetworks

