
Whittle Networks:
A Deep Likelihood Model for Time Series

Zhongjie Yu1 Fabrizio Ventola1 Kristian Kersting1,2

1Department of Computer Science, TU Darmstadt, Germany
2Centre for Cognitive Science, TU Darmstadt, and Hessian Center for AI

{yu, ventola, kersting}@cs.tu-darmstadt.de

Department of Computer Science | TU Darmstadt | Yu, Ventola and Kersting | 1



A Real World Motivation
Multivariate Time Series Analysis on the Edge

sensor data from wind turbine
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Multivariate Time Series and Graphical Models

Limitations of time series graphical models (TGMs)[1,2,3]:
• Inference is exponential in the worst case
• Sample size required for accurate learning is also exponential
• Learning requires inference as subroutine i.e. can take exponential time

⇒ In other words, TGMs are intractable!

[1] Tank, A., Foti, N. J., and Fox, E. B. Bayesian structure learning for stationary time series. In UAI, 2015.
[2] Dahlhaus, R. Graphical interaction models for multivariate time series. Metrika, 2000.
[3] Bach, F. R. and Jordan, M. I. Learning graphical models for stationary time series. IEEE Transactions on Signal Processing, 2004.
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Multivariate Time Series and Graphical Models

We propose:
• The first tractable probabilistic circuit for modeling the joint distribution of multivariate time
series, called Whittle sum-product networks (WSPNs), by introducing complex-valued SPNs.

• Deep likelihood functions for training deep neural networks for time series in an end-to-end
fashion, called Whittle Networks.
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Why Whittle Likelihood?

Time series statistics

The Fourier coefficients (real and imaginary parts) follow Gaussian
distribution while the time series in the time domain at each step
could follow an arbitrary distribution

Whittle approximation[4] – the Fourier
coefficients from discrete Fourier transform are
independent complex normal distributed:

dn,k ∼ N (0,Sk), k = 0, . . . ,T − 1

where Sk is the spectral density matrix:

Sk =
∑∞

h=−∞
Γ(h)e−iλkh

Thus, the Whittle likelihood given N independent
realizations is defined as:∏N

n=1

∏T−1

k=0

1
πp |Sk|

e−d∗n,kS
−1
k dn,k (1)

[4] Whittle, P. The analysis of multiple stationary time series. Journal of the Royal Statistical Society: Series B (Methodological), 1953.
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Whittle Sum-Product Networks

CoSPN:

• using pairwise Gaussian leaf nodes to model
complex random variables

• using an adapted non-parametric independence
test for structure learning[5]

The Whittle Approximation applies for stationary
time series. What about non-stationary time
series?

We propose the following relaxations for general
time series

• The mean of each frequency need not be 0
• The Fourier coefficients of different
frequencies need not be independent

WSPN: CoSPN which jointly models the Fourier
coefficients of time series

[5] Gens, R. and Domingos, P. Learning the Structure of Sum- Product Networks. ICML, 2013.
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Experiments
Probabilistic Modeling of Time Series

LearnSPN WSPN-Pair WSPN-2d ResSPN ResWSPN-Pair ResWSPN-2d MADE
train ⇑ -0.47 2.65 6.67 -60.62 -148.48 -135.94 -105.91

Sine test ⇑ -0.75 1.85 5.75 -63.13 -150.90 -138.86 -108.64
ood ⇓ −∞ −∞ −∞ -5880.85 -4010.04 -4227.18 -11646865.93
train ⇑ 256.11 272.84 277.50 249.47 254.46 254.30 336.03

MNIST test ⇑ 254.99 270.40 274.42 245.67 251.74 252.54 327.22
ood ⇓ 125.19 160.29 155.76 204.93 218.25 216.01 136.98
train ⇑ 54.73 63.75 65.01 -367.83 -318.10 -213.13 -204.23

Billiards test ⇑ 52.80 54.14 54.12 -377.38 -324.78 -219.04 -252.51
ood ⇓ -1984.38 -2348.57 -2435.70 -1003.49 -1052.21 -2113.68 -89521.82

S&P train ⇑ -191.64 113.06 174.45 308.22 194.57 1831.91 359.52
Stock train ⇑ -615.76 328.90 417.81 257.03 496.07 1172.85 639.10

WSPNs capture densities over time series better than baselines!
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Experiments
Probabilistic Modeling of Time Series

Data sample WSPN sample ood sample
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Experiments
Probabilistic Modeling of Time Series

Data sample WSPN sample ood sample
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WSPNs are great for time series modeling and
forecasting!
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Extracting Conditional Independence Structure of Time Series

For directed acyclic graphs (DAGs):

p(X1:N | G,Co) ≈
N∏

n=1

∏
vi∈V p(d{vi∪PaG(vi)}

n | Co)∏
vi∈V p(d{PaG(vi)}

n | Co)

For undirected graphs:

p(X1:N | G,Co) ≈
N∏

n=1

∏
ci∈C p(d{ci}

n | Co)∏
si∈S p(d{si}n | Co)
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Experiments
Conditional Independence Structure
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WSPNs can successfully extract the conditional independence of time series components!
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Whittle Networks
Providing Meaningful Probabilities to Deep Neural Networks

′

′

Whittle Autoencoder
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Whittle Networks
Providing Meaningful Probabilities to Deep Neural Networks

′

′

Whittle Autoencoder

WSPN Input WSPN Output
train 295.49 411.32
test 295.22 411.10
outlier1 239.78 401.54
outlier2 48.84 397.58

Whittle Networks can provide meaningful
probabilities for deep neural networks!
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Conclusion

We introduce:
• CoSPN – The first complex-valued SPN for modeling complex random variables
• WSPN – The first tractable probabilistic circuit for modeling the joint distribution of
multivariate time series, exploiting the Whittle approximation

• Conditional independence structure can be extracted efficiently from WSPNs
• Whittle Networks – meaningful probabilities for deep neural networks
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Thanks

Zhongjie Yu
yu@cs.tu-darmstadt.de

Fabrizio Ventola
ventola@cs.tu-darmstadt.de

Kristian Kersting
kersting@cs.tu-darmstadt.de

AIML lab Code

https://www.aiml.informatik.tu-darmstadt.de https://github.com/ml-research/WhittleNetworks
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