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Bilinear bandit

• For                        
• the agent selects
• Receives reward      as a noisy bilinear function.

• Objective: minimize the pseudo-regret

(Unknown) (Noise)



Our Contribution

• We reject the conjectured lower bound 
• By proposing a new algorithm   - FALB with upper bound 
• Leverages the low-dimensional property of the action space

• We additionally proposed a practical algorithm – rO-UCB. 
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Algorithm:   -FALB 

• Discretize the each side of the (possibly infinite) action space
• Set a new action space
• Apply d1d2-dimensional finite armed linear bandit algorithms 
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Motivation

• Bilinear bandit  -dimensional linear bandit
• Previous studies mainly focused on low-rank conditions of
• In the above perspective, the actions are always rank-1 matrices.
• Analyzing action spaces might reduce the regret upper bound
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Why this approach works

• We focus on the dimension of the action spaces
• Rank- matrix manifold has dimension 

• Discretization is a good way to exploit this dimension
• We prove that 
• Discretization error is ignorable

• -dimension FALB algorithm regret:   
• Which leads in total: 



Additional algorithm – rO-UCB

• Discretization is intractable in practice – requires              points
• Instead, we propose a practical algorithm, rO-UCB
• Based on the oracle about LSE with rank r constraint.

• rO-UCB is an adapted algorithm of LinUCB, with our novel confidence set.
• Regret upper bound:                    , but shows better empirical performance. 



Experimental result

• Better performance compare to the state of the art algorithms.
• Does not depend on a force exploration phase
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