Improved Regret Bounds of Bilinear Bandits using Action Space Analysis

Kyoungseol	k Jang
.	

Dept. of Mathematical Science, KAIST

Kwang-sung Jun

Dept. of Computation, University of Arizona

Seyoung Yun

Graduate School of AI, KAIST

Wanmo Kang

Dept. of Mathematical Science, KAIST

ICML 2021

Bilinear bandit

$$r_t = \boxed{x_t^{\top}} \times \boxed{\Theta^*}_{\text{(Unknown)}} \times \boxed{z_t} + \eta_t$$
(Noise)

- For $t=1,\cdots,T$
 - the agent selects $x_t \in \mathbb{R}^{d_1}, z_t \in \mathbb{R}^{d_2}$
 - Receives reward r_t as a noisy bilinear function.
- Objective: minimize the pseudo-regret $R_T = \sum_{t=1}^{\infty} \left[(x^*)^\top \Theta^* z^* x_t^\top \Theta^* z_t \right]$

Our Contribution

- We reject the conjectured lower bound $\Omega(\sqrt{rd^3T})$
 - By proposing a new algorithm ϵ FALB with upper bound $\tilde{O}(\sqrt{d^3T})$
 - Leverages the low-dimensional property of the action space

Result	Regret UB
LinUCB (Abbasi et al. (2011))	$\tilde{O}(d^2\sqrt{T})$
ESTR (Jun et al. (2019))	$\tilde{O}(\sqrt{rd^3T})$
LowGLOC (Lu et al. (2020))	$\tilde{O}(\sqrt{rd^3T})$
ϵ -FALB (Ours)	$\tilde{O}(\sqrt{d^3T})$

• We additionally proposed a practical algorithm – rO-UCB.

• Discretize the each side of the (possibly infinite) action space

- Discretize the each side of the (possibly infinite) action space
- Set a new action space $\mathcal{A} = \{vec(xz^\top) : x \in \mathcal{X}_{\epsilon}, z \in \mathcal{Z}_{\epsilon}\}$

- Discretize the each side of the (possibly infinite) action space
- Set a new action space $\mathcal{A} = \{vec(xz^\top) : x \in \mathcal{X}_{\epsilon}, z \in \mathcal{Z}_{\epsilon}\}$
- Apply d₁d₂-dimensional **finite** armed linear bandit algorithms

• Bilinear bandit

• Bilinear bandit $\rightarrow d_1 d_2$ -dimensional linear bandit

- Bilinear bandit $\rightarrow d_1 d_2$ -dimensional linear bandit
- Previous studies mainly focused on low-rank conditions of Θ^*

- Bilinear bandit $\rightarrow d_1 d_2$ -dimensional linear bandit
- Previous studies mainly focused on low-rank conditions of Θ^*
- In the above perspective, the actions are always rank-1 matrices.

- Bilinear bandit $\rightarrow d_1 d_2$ -dimensional linear bandit
- Previous studies mainly focused on low-rank conditions of Θ^*
- In the above perspective, the actions are always rank-1 matrices.
- Analyzing action spaces might reduce the regret upper bound

Why this approach works

- We focus on the dimension of the action spaces
 - Rank-r matrix manifold has dimension $r(d_1 + d_2 r)$

- Discretization is a good way to exploit this dimension
 - We prove that $\log |\mathcal{A}| \approx (d_1 + d_2) \log(1/\epsilon)$
 - Discretization error is ignorable
- d_1d_2 -dimension FALB algorithm regret: $\tilde{O}(\sqrt{d_1d_2T\log K})$
- Which leads in total: $\tilde{O}(\sqrt{d_1d_2(d_1+d_2)T})$

Additional algorithm – rO-UCB

- Discretization is intractable in practice requires $\tilde{O}(T^{d/2})$ points
- Instead, we propose a practical algorithm, rO-UCB
 - Based on the oracle about LSE with rank r constraint.

(Opt)
$$\begin{cases} \min_{\Theta} & \sum_{s=1}^{t} (x_s^{\top} \Theta z_s - r_s)^2 \\ \text{subject to} & \operatorname{rank}(\Theta) \leq r, \\ \|\Theta\|_F \leq C \end{cases}$$

- rO-UCB is an adapted algorithm of LinUCB, with our novel confidence set.
- Regret upper bound: $\tilde{O}(\sqrt{rd^3T})$, but shows better empirical performance.

Experimental result

- Better performance compare to the state of the art algorithms.
- Does not depend on a force exploration phase

Thank you!

Contact e-mail: jajajang@kaist.ac.kr

Reference

- Abbasi-Yadkori et al., Improved algorithms for linear stochastic bandits. In NeurIPS 2011
- Jun et al, Bilinear bandits with low-rank structure. In ICML 2019
- Lu et al, Low-rank generalized linear bandit problem, In AISTATS 2020