Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization

Yivan Zhang^{1,2} Gang Niu^2 Masashi Sugiyama^{2,1}

¹The University of Tokyo ²RIKEN AIP

International Conference on Machine Learning 2021

1 Overview

2 Background

- 3 Motivation
- 4 Method

5 Experiments

6 Conclusion

Overview

Problem

- **Noise transition matrix** is important in **learning from noisy labels**.
- However, it is usually unavailable or hard to obtain.
- Existing methods often depend on unreliable noisy class-posterior estimation.

Contribution

- We characterized the class-conditional label corruption process.
- We proposed a conceptually novel method for transition matrix estimation.

Methodology

- Make probabilities more distinguishable: total variation regularization
- **Capture uncertainties during training**: Dirichlet posterior update

1 Overview

2 Background

- 3 Motivation
- 4 Method
- 5 Experiments

6 Conclusion

Learning from Noisy Labels

Notation

- $\blacksquare X: input features$
- \blacksquare Y: true labels
- $\ \ \, \widetilde{Y}: \ \ \, {\rm noisy\ labels}$

Class-conditional noise (CCN) assumes that the noisy label \widetilde{Y} is independent of the input feature X given the true label Y: $p(\widetilde{Y}|Y,X) = p(\widetilde{Y}|Y)$.

Noise transition matrix
$$oldsymbol{T}_{ij} = p(\widetilde{Y}=j|Y=i)$$

Noise Transition Matrix

Class-conditional label corruption maps the probability simplex Δ^{K-1} to a convex hull Conv(T) of the rows of the noise transition matrix T.

- \blacksquare Outer black triangle: probability simplex Δ^2
- Inner colored triangle: convex hull $\operatorname{Conv}(T)$

Good news: if the ground-truth noise transition matrix T is known, p(Y|X) is identifiable based on observations of $p(\tilde{Y}|X)$ [Patrini et al., 2017].

Problem

Noise transition matrix is usually not available [Patrini et al., 2017].

Solution

Learn the noise transition matrix from only noisy labels.

- An instance x is called an anchor point for class i if p(Y = i | X = x) = 1.
- Based on anchor points, we can estimate $p(\widetilde{Y}|X)$ to obtain an estimate of T.

$$\boldsymbol{p}(\widetilde{Y}|X=x) = \boldsymbol{T}^{\mathsf{T}}\boldsymbol{p}(Y|X=x) = \boldsymbol{T}_i$$

Problem

Anchor points are hard to obtain [Xia et al., 2019, Yao et al., 2020].

Solution

Do not rely on a separate set of anchor points.

Overconfidence

Problem

The estimation of the noisy class-posterior could be unreliable due to the **overconfidence** of deep neural networks [Guo et al., 2017, Hein et al., 2019].

Solution

Do not estimate the noisy class-posterior directly using neural networks.

1 Overview

2 Background

3 Motivation

5 Experiments

6 Conclusion

Transition Matrix Equivalence

If the transition matrix can be written as a product of two transition matrices, then there could be **infinitely many wrong models** due to non-identifiability.

Transition Matrix Decomposition

- If anchor points exist in the dataset, then the correct model is unique and has nice properties.
- If such a condition does not hold, we do not have consistency guarantees, but the proposed method may still work empirically.
- Note that we do not need to detect anchor points from the dataset.

Transition Matrix as a Contraction Mapping

Key motivation 1

The mapping $\Delta \rightarrow \text{Conv}(U)$ defined by $p \mapsto U^{\mathsf{T}}p$ is a contraction mapping over the simplex Δ relative to the total variation distance [Del Moral et al., 2003]:

 $\begin{aligned} \forall \boldsymbol{U} \in \mathcal{T}, \forall \boldsymbol{p}, \boldsymbol{q} \in \Delta, \\ d_{\mathrm{TV}}(\boldsymbol{U}^{\mathsf{T}} \boldsymbol{p}, \boldsymbol{U}^{\mathsf{T}} \boldsymbol{q}) \leq d_{\mathrm{TV}}(\boldsymbol{p}, \boldsymbol{q}) \end{aligned}$

Probabilities of the correct model are more **distinguishable** from each other.

Transition Matrix Estimation

Key motivation 2

In addition to the gradient information, the **confusion matrix** is also helpful for estimating the transition matrix.

We have a **derivative-free** approach that uses Dirichlet distributions to model the transition matrix to capture uncertainties during training.

1 Overview

2 Background

3 Motivation

5 Experiments

6 Conclusion

Overview

Our model has two modules:

- (a) a neural network for predicting p(Y|X)
- (b) a Dirichlet posterior for the noise transition matrix T

The learning objective also contains two parts:

- (i) the usual **cross-entropy loss** for classification from noisy labels
- (ii) a total variation regularization term for the predicted probability

Total Variation Regularization

We sample a fixed number of pairs to reduce the additional computational cost.

$$\begin{split} d_{\mathrm{TV}}(\boldsymbol{p}, \boldsymbol{q}) &\coloneqq \frac{1}{2} \| \boldsymbol{p} - \boldsymbol{q} \|_1 \\ R(W) &\coloneqq \mathop{\mathbb{E}}_{X_1 \sim p(X)} \mathop{\mathbb{E}}_{X_2 \sim p(X)} [d_{\mathrm{TV}}(\boldsymbol{p}_1, \boldsymbol{p}_2)] \\ \text{where } \boldsymbol{p}_i &\coloneqq \boldsymbol{p}(Y | X_i; W) \quad i = 1, 2 \end{split}$$

p = model(x) # probability [batch_size, num_classes] idx_1, idx_2 = randint(0, batch_size, (2, num_pairs)) tv = 0.5 * l1_norm(p[idx_1] - p[idx_2], dim=1).mean()

Dirichlet Posterior Update

Inspired by the closed-form posterior update rule for the Dirichlet-multinomial conjugate, we update the concentration parameters A during training using the confusion matrix C, where (β_1, β_2) are fixed hyperparameters.

$$egin{aligned} m{A}^{(ext{posterior})} &= m{A}^{(ext{prior})} + m{C}^{(ext{observation})} \ m{A} &\leftarrow m{eta}_1 m{A} + m{eta}_2 m{C} \end{aligned}$$

y = Categorical(p).sample()
C = confusion_matrix(y, y_)
A = beta_1 * A + beta_2 * C

predicted labels
confusion matrix

Optimization

For each batch of data, we sample a transition matrix from the Dirichlet posterior.

$$\boldsymbol{T}_{i} \sim \text{Dirichlet}(\boldsymbol{A}_{i}) \quad (i = 1, \dots, K)$$
$$L_{0}(W, \boldsymbol{T}) \coloneqq \underset{X \sim p(X)}{\mathbb{E}} \left[D_{\text{KL}} \left(\boldsymbol{p}(\widetilde{Y}|X) \parallel \boldsymbol{T}^{\mathsf{T}} \boldsymbol{p}(Y|X;W) \right) \right]$$
$$\mathcal{L}(W, \boldsymbol{T}) \coloneqq L_{0}(W, \boldsymbol{T}) - \gamma R(W)$$

T = Dirichlet(A).sample() # transition matrix loss = cross_entropy(p @ T, y_) - gamma * tv

1 Overview

2 Background

3 Motivation

5 Experiments

6 Conclusion

Settings

Noise types

Baselines

- (Robust) loss functions:
 - (CCE) categorical cross-entropy loss
 - (MAE) mean absolute error [Ghosh et al., 2017]
 - (GCE) generalized cross-entropy loss [Zhang and Sabuncu, 2018]
- Transition matrix estimations:
 - (Forward) forward correction [Patrini et al., 2017]
 - (T-Revision) transition-revision [Xia et al., 2019]
 - (Dual-T) dual-T estimator [Yao et al., 2020]

		(a) Clean	(b) Symm.	(c) Pair	(d) $Pair^2$	(e) Trid.	(f) Rand.
CIFAR100	MAE	11.23(1.02)	7.89(0.67)	6.94(1.11)	6.60(0.74)	7.45(0.55)	7.15(0.98)
	CCE	70.58(0.29)	42.94(0.47)	44.00(0.71)	41.37(0.27)	46.55(0.54)	42.41(0.48)
	GCE	57.10(0.85)	48.66(0.58)	45.27(0.85)	43.67(0.94)	50.98(0.33)	48.66(0.63)
	Forward	70.58(0.28)	44.32(0.64)	44.17(0.57)	42.07(0.55)	47.48(0.40)	43.15(0.53)
	T-Revision	70.47(0.26)	46.52(0.57)	44.08(0.42)	42.01(0.52)	47.59(0.60)	45.33(0.40)
	Dual-T	70.56(0.28)	55.92(0.60)	46.22(0.72)	44.74(0.65)	61.68(0.51)	57.92(0.50)
	TVG	70.02(0.30)	57.33(0.42)	45.68(0.85)	44.38(0.72)	54.23(0.53)	59.85(0.61)
	TVD	69.93(0.21)	52.54(0.45)	${f 56.02(0.82)}$	49.18 (0.53)	${f 62.45(0.44)}$	53.95(0.47)

Improved classification performance, measured by accuracy.

Improved transition matrix estimation, measured by average total variation.

		(a) Clean	(b) Symm.	(c) Pair	(d) Pair ²	(e) Trid.	(f) Rand.
CIFAR-100	Forward	0.00(0.00)	48.62(0.11)	39.81(0.03)	43.57(0.04)	40.92(0.07)	49.06(0.10)
	T-Revision	0.46(0.05)	31.58(0.46)	39.45(0.03)	42.77(0.06)	40.01(0.09)	39.49(0.26)
	Dual-T	3.10(0.08)	17.10(0.18)	33.26(0.20)	33.79(0.26)	23.56(0.43)	22.59(0.23)
	TVG	1.59(0.02)	13.11(0.10)	37.79(0.30)	38.83(0.34)	30.80(0.51)	16.47(0.18)
	TVD	21.98(0.11)	26.46(0.15)	29.47 (0.26)	31.34 (0.30)	23.86(0.22)	35.37(0.30)

1 Overview

2 Background

- 3 Motivation
- 4 Method

5 Experiments

- Total variation regularization encourages the predicted probabilities to be more distinguishable from each other.
- The proposed method can estimate the transition matrix and learn a classifier simultaneously.
- Under mild assumptions, the proposed method yields a consistent estimator of the noise transition matrix.

Takeaway

- In this problem, the weak supervision is insufficient to identify the true model, i.e., we have a class of observationally equivalent models.
- We address this issue by finding characteristics of the true model under realistic assumptions and introducing a partial order as a regularization.
- Such an approach can be used in other weakly supervised learning problems.

Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization

Yivan Zhang^{1,2} Gang Niu^2 Masashi Sugiyama^{2,1}

¹The University of Tokyo ²RIKEN AIP

International Conference on Machine Learning 2021

References

- Pierre Del Moral, Michel Ledoux, and Laurent Miclo. On contraction properties of markov kernels. *Probability* theory and related fields, 126(3):395–420, 2003.
- Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep neural networks. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence*, pages 1919–1925, 2017.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *Proceedings of the 34th International Conference on Machine Learning*, pages 1321–1330, 2017.
- Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 41–50, 2019.
- Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1944–1952, 2017.
- Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama. Are anchor points really indispensable in label-noise learning? In Advances in Neural Information Processing Systems, pages 6838–6849, 2019.
- Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi Sugiyama. Dual T: Reducing estimation error for transition matrix in label-noise learning. In *Advances in Neural Information Processing Systems*, pages 7260–7271, 2020.
- Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In *Advances in neural information processing systems*, pages 8778–8788, 2018.