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Overview

Problem
Noise transition matrix is important in learning from noisy labels.
However, it is usually unavailable or hard to obtain.
Existing methods often depend on unreliable noisy class-posterior estimation.

Contribution
We characterized the class-conditional label corruption process.
We proposed a conceptually novel method for transition matrix estimation.

Methodology
Make probabilities more distinguishable: total variation regularization
Capture uncertainties during training: Dirichlet posterior update
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Learning from Noisy Labels
Notation
X: input features
Y : true labels
Ỹ : noisy labels

Assumption

X Y Ỹ

Class-conditional noise (CCN) assumes that the noisy label Ỹ is independent of
the input feature X given the true label Y : p(Ỹ |Y,X) = p(Ỹ |Y ).

Noise transition matrix Tij = p(Ỹ = j|Y = i)



p(Ỹ = 1|X)

...
p(Ỹ = K|X)


 =



p(Ỹ = 1|Y = 1) . . . p(Ỹ = 1|Y = K)

... . . . ...
p(Ỹ = K|Y = 1) . . . p(Ỹ = K|Y = K)






p(Y = 1|X)

...
p(Y = K|X)




⇓
p(Ỹ |X) = T Tp(Y |X)
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Noise Transition Matrix

Clean Symmetric Pairwise General

Class-conditional label corruption maps the probability simplex ∆K−1 to a
convex hull Conv(T ) of the rows of the noise transition matrix T .

Outer black triangle: probability simplex ∆2

Inner colored triangle: convex hull Conv(T )
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Identifiability

Good news: if the ground-truth noise transition matrix T is known, p(Y |X) is
identifiable based on observations of p(Ỹ |X) [Patrini et al., 2017].

Problem
Noise transition matrix is usually not available [Patrini et al., 2017].

Solution
Learn the noise transition matrix from only noisy labels.
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Anchor Points

An instance x is called an anchor point for class i if p(Y = i|X = x) = 1.

Based on anchor points, we can estimate p(Ỹ |X) to obtain an estimate of T .

p(Ỹ |X = x) = T Tp(Y |X = x) = Ti

Problem
Anchor points are hard to obtain [Xia et al., 2019, Yao et al., 2020].

Solution
Do not rely on a separate set of anchor points.
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Overconfidence

Data Empirical distribution

overconfidence

Estimated distribution
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Problem
The estimation of the noisy class-posterior could be unreliable due to the
overconfidence of deep neural networks [Guo et al., 2017, Hein et al., 2019].

Solution
Do not estimate the noisy class-posterior directly using neural networks.
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Transition Matrix Equivalence

p(Ỹ |X) = T̂ Tp̂(Y |X) = V T(UTp(Y |X))

p(Ỹ1|X)

p(Ỹ2|X)

p(Ỹ3|X)


 =

.64 .14 .07

.27 .70 .24

.09 .16 .69



1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0



p(Y1|X)
p(Y2|X)
p(Y3|X)





 (best)



p(Ỹ1|X)

p(Ỹ2|X)

p(Ỹ3|X)


 =

0.7 0.0 0.1
0.3 0.8 0.0
0.0 0.2 0.9



0.9 0.2 0.0
0.0 0.8 0.3
0.1 0.0 0.7



p(Y1|X)
p(Y2|X)
p(Y3|X)









p(Ỹ1|X)

p(Ỹ2|X)

p(Ỹ3|X)


 =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0



.64 .14 .07
.27 .70 .24
.09 .16 .69



p(Y1|X)
p(Y2|X)
p(Y3|X)





 (worst)

If the transition matrix can be written as a product of two transition matrices,
then there could be infinitely many wrong models due to non-identifiability.
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Transition Matrix Decomposition

T̂Tp̂ = V(UTp) = TTp
V

T = UV

T̂T
1 p̂1 = T̂T

2 p̂2 = TTp
T̂1

T̂2

p̂1 p̂2

If anchor points exist in the dataset, then the correct model is unique and
has nice properties.
If such a condition does not hold, we do not have consistency guarantees, but
the proposed method may still work empirically.
Note that we do not need to detect anchor points from the dataset.
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Transition Matrix as a Contraction Mapping

Key motivation 1
The mapping ∆→ Conv(U) defined by
p 7→ UTp is a contraction mapping
over the simplex ∆ relative to the total
variation distance [Del Moral et al., 2003]:

∀U ∈ T ,∀p, q ∈ ∆,

dTV(UTp,UTq) ≤ dTV(p, q)

Probabilities of the correct model are more
distinguishable from each other.
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Transition Matrix Estimation

Key motivation 2
In addition to the gradient information,
the confusion matrix is also helpful for
estimating the transition matrix.

We have a derivative-free approach that
uses Dirichlet distributions to model the
transition matrix to capture uncertainties
during training.
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Overview

Our model has two modules:
(a) a neural network for predicting p(Y |X)
(b) a Dirichlet posterior for the noise transition matrix T

The learning objective also contains two parts:
(i) the usual cross-entropy loss for classification from noisy labels
(ii) a total variation regularization term for the predicted probability
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Total Variation Regularization

We sample a fixed number of pairs to reduce the additional computational cost.

dTV(p, q) :=
1

2
‖p− q‖1

R(W ) := E
X1∼p(X)

E
X2∼p(X)

[dTV(p1,p2)]

where pi := p(Y |Xi;W ) i = 1, 2

p = model(x) # probability [batch_size, num_classes]
idx_1, idx_2 = randint(0, batch_size, (2, num_pairs))
tv = 0.5 * l1_norm(p[idx_1] - p[idx_2], dim=1).mean()
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Dirichlet Posterior Update

Inspired by the closed-form posterior update rule for the Dirichlet-multinomial
conjugate, we update the concentration parameters A during training using the
confusion matrix C, where (β1, β2) are fixed hyperparameters.

A(posterior) = A(prior) + C(observation)

A← β1A + β2C

y = Categorical(p).sample() # predicted labels
C = confusion_matrix(y, y_) # confusion matrix
A = beta_1 * A + beta_2 * C # update
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Optimization

For each batch of data, we sample a transition matrix from the Dirichlet posterior.

Ti ∼ Dirichlet(Ai) (i = 1, . . . , K)

L0(W,T ) := E
X∼p(X)

[
DKL

(
p(Ỹ |X)

∥∥∥ T Tp(Y |X;W )
)]

L(W,T ) := L0(W,T )− γR(W )

T = Dirichlet(A).sample() # transition matrix
loss = cross_entropy(p @ T, y_) - gamma * tv
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Settings
Noise types

100
100

100
100

100
100

100
100

100
100

Clean
50 6 6 6 6 6 6 6 6 6
6 50 6 6 6 6 6 6 6 6
6 6 50 6 6 6 6 6 6 6
6 6 6 50 6 6 6 6 6 6
6 6 6 6 50 6 6 6 6 6
6 6 6 6 6 50 6 6 6 6
6 6 6 6 6 6 50 6 6 6
6 6 6 6 6 6 6 50 6 6
6 6 6 6 6 6 6 6 50 6
6 6 6 6 6 6 6 6 6 50

Symm.
60 40

60 40
60 40

60 40
60 40

60 40
60 40

60 40
60 40

40 60

Pair

56 38 6
56 38 6

56 38 6
56 38 6

56 38 6
56 38 6

56 38 6
56 38 6

6 56 38
38 6 56

Pair2
58 21 21
21 58 21

21 58 21
21 58 21

21 58 21
21 58 21

21 58 21
21 58 21

21 58 21
21 21 58

Trid.
51 2 1 8 1 23 12
7 49 1 1 25 3 2 12
1 47 13 4 8 2 24
2 14 2 47 15 3 7 10
6 6 17 1 48 9 4 9
23 1 2 2 55 5 1 11
4 32 53 10 1
3 7 19 3 11 4 52
14 1 21 1 5 2 56
2 19 3 2 2 8 22 43

Rand.

100
100

100
100

100
100

100
100

100
100

Clean
50 6 6 6 6 6 6 6 6 6
6 50 6 6 6 6 6 6 6 6
6 6 50 6 6 6 6 6 6 6
6 6 6 50 6 6 6 6 6 6
6 6 6 6 50 6 6 6 6 6
6 6 6 6 6 50 6 6 6 6
6 6 6 6 6 6 50 6 6 6
6 6 6 6 6 6 6 50 6 6
6 6 6 6 6 6 6 6 50 6
6 6 6 6 6 6 6 6 6 50

Symm.
60 40

60 40
60 40

60 40
60 40

60 40
60 40

60 40
60 40

40 60

Pair

56 38 6
56 38 6

56 38 6
56 38 6

56 38 6
56 38 6

56 38 6
56 38 6

6 56 38
38 6 56

Pair2
58 21 21
21 58 21

21 58 21
21 58 21

21 58 21
21 58 21

21 58 21
21 58 21

21 58 21
21 21 58

Trid.
51 2 1 8 1 23 12
7 49 1 1 25 3 2 12
1 47 13 4 8 2 24
2 14 2 47 15 3 7 10
6 6 17 1 48 9 4 9
23 1 2 2 55 5 1 11
4 32 53 10 1
3 7 19 3 11 4 52
14 1 21 1 5 2 56
2 19 3 2 2 8 22 43

Rand.

Baselines
(Robust) loss functions:

(CCE) categorical cross-entropy loss
(MAE) mean absolute error [Ghosh et al., 2017]
(GCE) generalized cross-entropy loss [Zhang and Sabuncu, 2018]

Transition matrix estimations:
(Forward) forward correction [Patrini et al., 2017]
(T-Revision) transition-revision [Xia et al., 2019]
(Dual-T) dual-T estimator [Yao et al., 2020]
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Results
Improved classification performance, measured by accuracy.

(a) Clean (b) Symm. (c) Pair (d) Pair2 (e) Trid. (f) Rand.

C
IF
A
R
10
0

MAE 11.23(1.02) 7.89(0.67) 6.94(1.11) 6.60(0.74) 7.45(0.55) 7.15(0.98)
CCE 70.58(0.29) 42.94(0.47) 44.00(0.71) 41.37(0.27) 46.55(0.54) 42.41(0.48)
GCE 57.10(0.85) 48.66(0.58) 45.27(0.85) 43.67(0.94) 50.98(0.33) 48.66(0.63)

Forward 70.58(0.28) 44.32(0.64) 44.17(0.57) 42.07(0.55) 47.48(0.40) 43.15(0.53)
T-Revision 70.47(0.26) 46.52(0.57) 44.08(0.42) 42.01(0.52) 47.59(0.60) 45.33(0.40)
Dual-T 70.56(0.28) 55.92(0.60) 46.22(0.72) 44.74(0.65) 61.68(0.51) 57.92(0.50)
TVG 70.02(0.30) 57.33(0.42) 45.68(0.85) 44.38(0.72) 54.23(0.53) 59.85(0.61)
TVD 69.93(0.21) 52.54(0.45) 56.02(0.82) 49.18(0.53) 62.45(0.44) 53.95(0.47)

Improved transition matrix estimation, measured by average total variation.

(a) Clean (b) Symm. (c) Pair (d) Pair2 (e) Trid. (f) Rand.

C
IF
A
R
-1
00

Forward 0.00(0.00) 48.62(0.11) 39.81(0.03) 43.57(0.04) 40.92(0.07) 49.06(0.10)
T-Revision 0.46(0.05) 31.58(0.46) 39.45(0.03) 42.77(0.06) 40.01(0.09) 39.49(0.26)
Dual-T 3.10(0.08) 17.10(0.18) 33.26(0.20) 33.79(0.26) 23.56(0.43) 22.59(0.23)
TVG 1.59(0.02) 13.11(0.10) 37.79(0.30) 38.83(0.34) 30.80(0.51) 16.47(0.18)
TVD 21.98(0.11) 26.46(0.15) 29.47(0.26) 31.34(0.30) 23.86(0.22) 35.37(0.30)
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Summary

Total variation regularization encourages the predicted probabilities to be
more distinguishable from each other.
The proposed method can estimate the transition matrix and learn a classifier
simultaneously.
Under mild assumptions, the proposed method yields a consistent estimator
of the noise transition matrix.
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Takeaway

In this problem, the weak supervision is insufficient to identify the true model,
i.e., we have a class of observationally equivalent models.
We address this issue by finding characteristics of the true model under realistic
assumptions and introducing a partial order as a regularization.
Such an approach can be used in other weakly supervised learning problems.
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