Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

Seungyul Han and Youngchul Sung

Dept. of Electrical Engineering

KAIST

ICML 2021

Jun. 20, 2021

Exploration in Reinforcement Learning (RL)

- Exploration to visit diverse samples is one of most important issues in RL community.
- Exploration can allow policy to converge on better points without falling into local optima.
- Random noise (Gaussian policy, parameter noise)
- Intrinsic reward (Counting, prediction error)
- Diversity gain (Maximum entropy RL, mutual information gain)
 - → We focus on the maximum entropy framework since it is widely used in RL and its optimal convergence is guaranteed.

Maximum Entropy (MaxEnt) RL

- Information entropy $\mathcal{H}(p) = \mathbb{E}_{x \sim p}[-\log p(x)]$: Amount of uncertainty(information).
- MaxEnt RL adds the sum of policy entropy $\mathcal{H}(\pi)$ to the return objective of standard RL.

$$J(\pi) = \mathbb{E}_{\tau_0 \sim \pi} \left[\sum_{t=0}^{T-1} r_t + \beta \mathcal{H}(\pi) \right], \tag{1}$$

 τ_t : A sample trajectory $(s_t, a_t, s_{t+1}, a_{t+1}, \dots)$, $\beta \in (0, \infty)$: Entropy weighting factor.

MaxEnt RL framework can lead to wider exploration compared to standard RL.

Soft Actor-Critic (SAC)

• Haarnoja et al., (2018) extends MaxEnt RL to the infinite-horizon MDP:

$$J_{SAC}(\pi) = \mathbb{E}_{\tau_0 \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t (r_t + \beta \mathcal{H}(\pi)) \right], \qquad (2)$$

- Soft policy iteration (SPI) theoretically guarantees the optimal convergence.
- Soft actor-critic (SAC) is a practical actor-critic algorithm for SPI.
- SAC has a good performance compared to standard RL algorithms.
- However, $\mathcal{H}(\pi)$ does not capture the previous sample distribution in off-policy RL.

Contributions

5

We proposed,

- Sample-aware entropy regularization that uses previous action distribution for better exploration,
- Diverse policy iteration: Prove the optimal convergence of sample-aware entropy regularization,
- Diversity actor-critic (DAC): Practical implementation of sample-aware entropy framework,
- Adaptation scheme: Adaptive weighting factor in the mixture distribution.

Sample-Aware Entropy Regularization

- q: the distribution of previous action samples stored in the replay buffer \mathcal{D} .
- ullet We draw current samples from policy π and store them in the replay buffer.
- The updated sample action distribution will be a mixture of π and q:

$$q_{mix}^{\pi,\alpha} := \alpha \pi + (1 - \alpha)q. \tag{3}$$

 $\alpha \in [0,1]$: Weighting factor of the mixture distribution.

ullet We regularizes the entropy of the mixture distribution $\mathcal{H}(q_{mix}^{\pi,lpha})$:

$$J(\pi) = \mathbb{E}_{\tau_0 \sim \pi} \left[\sum_{t=0}^{T-1} \gamma^t (r_t + \beta \mathcal{H}(q_{mix}^{\pi,\alpha})) \right]. \tag{4}$$

ightharpoonup Previously sampled actions will be given low probabilities to make $q_{mix}^{\pi,\alpha}$ uniform.

A Toy Example

- Consider 1-step MDP with s_0 is the unique initial state.
- There is N_a discrete actions ($\mathcal{A} = \{A_1, \cdots, A_{N_a}\}$), and s_1 is the terminal state, and r is a deterministic reward function.
- ullet There are N_a state-action pairs in total.
- We assume there are already N_a-1 samples in the buffer $\mathcal{D}=\{(s_0,A_1,r(s_0,A_1)),\cdots,(s_0,A_{N_a-1},r(s_0,A_{N_a-1}))\}.$
- ullet To estimate Q-function for all possible pairs, the policy should sample the last action A_{N_a} .

A Toy Example

- ullet Simple policy entropy maximization requires N_a samples on average to visit A_{N_a} .
- q is defined as $q(a_0|s_0) = \frac{1}{N_a-1}$ for $a_0 \in \{A_1, \cdots, A_{N_a-1}\}$ and $q(A_{N_a}|s_0) = 0$.
- If we set $\alpha = \frac{1}{N_a}$ in $q_{mix}^{\pi,\alpha} = \alpha \pi + (1 \alpha)q$, $\pi(A_{N_a}|s_0) = 1$ maximizes $\mathcal{H}(q_{mix}^{\pi,\alpha})$.
- \bullet Thus, we only need one sample to visit the action A_{N_a} .
 - → The proposed sample-aware entropy framework leads sample-efficient exploration!

Ratio Function and Diverse Policy Iteration

- \bullet q estimation requires discretization/counting/dimension reduction \cdots .
- We aim to maximize $J(\pi)$ by using the ratio function $R^{\pi,\alpha}$ without using explicit q.

$$R^{\pi,\alpha} = \frac{\alpha\pi}{\alpha\pi + (1-\alpha)q}$$
: the ratio of $\alpha\pi$ to $q_{mix}^{\pi,\alpha}$, (5)

• Diverse policy iteration: the optimal convergence proof in terms of $R^{\pi_{old},\alpha}$.

Theorem 1 (Diverse Policy Iteration). By repeating iteration of the diverse policy evaluation and the diverse policy improvement, any initial policy converges to the optimal policy π^* s.t. $Q^{\pi^*}(s_t, a_t) \geq Q^{\pi'}(s_t, a_t), \forall \pi' \in \Pi, \forall (s_t, a_t) \in \mathcal{S} \times \mathcal{A}$. Also, such π^* achieves maximum J, i.e., $J_{\pi^*}(\pi^*) \geq J_{\pi}(\pi)$ for any $\pi \in \Pi$.

Theorem 2. Suppose that the policy is parameterized with parameter θ . Then, for parameterized policy π_{θ} , the two objective functions $J_{\pi_{\theta old}}(\pi_{\theta}(\cdot|s_t))$ and $\tilde{J}_{\pi_{\theta old}}(\pi_{\theta}(\cdot|s_t))$ have the same gradient direction for θ at $\theta = \theta_{old}$ for all $s_t \in \mathcal{S}$, where θ_{old} is the parameter of the given current policy π_{old} .

Diversity Actor-Critic

- Diversity actor-critic (DAC): practical implementation of sample-aware entropy regularized RL.
- ullet $R^{\pi_{old},lpha}$ can be estimated by R^{lpha}_{η} based on density ratio estimation [Sugiyama et al., 2012].
- All objective/loss functions in DAC can be represented in terms of R_{η}^{α} :

$$\hat{J}_{\pi}(\theta) = \mathbb{E}_{s_t \sim \mathcal{D}, \ a_t \sim \pi_{\theta}} [Q_{\phi}(s_t, a_t) + \alpha \log R_{\eta}^{\alpha}(s_t, a_t) - \alpha \log \pi_{\theta}(a_t | s_t)], \tag{6}$$

$$\hat{J}_{R^{\alpha}}(\eta) = \mathbb{E}_{s_t \sim \mathcal{D}}[\alpha \mathbb{E}_{a_t \sim \pi_{\theta}}[\log R_{\eta}^{\alpha}(s_t, a_t)] + (1 - \alpha) \mathbb{E}_{a_t \sim \mathcal{D}}[\log(1 - R_{\eta}^{\alpha}(s_t, a_t))]], \tag{7}$$

$$\hat{L}_{Q}(\phi) = \mathbb{E}_{(s_{t}, a_{t}) \sim \mathcal{D}} \left[\frac{1}{2} (Q_{\phi}(s_{t}, a_{t}) - \hat{Q}(s_{t}, a_{t}))^{2} \right], \tag{8}$$

$$\hat{L}_V(\psi) = \mathbb{E}_{s_t \sim \mathcal{D}} \left[\frac{1}{2} (V_{\psi}(s_t) - \hat{V}(s_t))^2 \right], \tag{9}$$

Experiments: Pure Exploration

• DAC has better sample-efficiency for exploration than other exploration methods.

Figure 1: Pure exploration comparison

Experiments: Sparse Rewarded Tasks

- Evaluation on SparseMujoco (Reward: 1 if the agent exceeds the threshold).
- Compared DAC with SAC baselines.
- DAC chooses more diverse action and visit more states, and it yields better performance.

Figure 2: (a) D_{JS}^{α} with $\alpha = 0.5$ (b) state visitation (left) and the performance comparison (right) on Sparse-Mujoco tasks

Conclusion

13

We proposed,

- 1. Sample-aware entropy regularization that considers the previous distribution for better exploration.
- 2. Diverse policy iteration to guarantee the convergence.
- 3. Diversity actor-critic to implement sample-aware entropy regularized RL.
- 4. DAC shows better performance compared to SAC baselines and recent RL algorithms.

Thank You!!