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Exploration in Reinforcement Learning (RL)

e Exploration to visit diverse samples is one of most important issues in RL community.

e Exploration can allow policy to converge on better points without falling into local optima.
e Random noise (Gaussian policy, parameter noise)

e Intrinsic reward (Counting, prediction error)

e Diversity gain (Maximum entropy RL, mutual information gain)

=> We focus on the maximum entropy framework since it is widely used in RL and its optimal

convergence is guaranteed.
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Maximum Entropy (MaxEnt) RL

e Information entropy H(p) = E,,[— log p(z)]: Amount of uncertainty(information).
e MaxEnt RL adds the sum of policy entropy H(m) to the return objective of standard RL.

J(7T> — ETONW [Z T+ 67—[(7)] ) <1>

t=0

T2 A sample trajectory (s, at, Spi1, a1+ ), B € (0,00): Entropy weighting factor.

e MaxEnt RL framework can lead to wider exploration compared to standard RL.
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Soft Actor-Critic (SAC)

e Haarnoja et al., (2018) extends MaxEnt RL to the infinite-horizon MDP:

©. ]

Z (re + BH(T)) |

t=0

Jsac(m) = Eqyr

e Soft policy iteration (SPI) theoretically guarantees the optimal convergence.
e Soft actor-critic (SAC) is a practical actor-critic algorithm for SPI.
e SAC has a good performance compared to standard RL algorithms.

e However, H(7) does not capture the previous sample distribution in off-policy RL.
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Contributions

We proposed,
e Sample-aware entropy regularization that uses previous action distribution for better exploration,
e Diverse policy iteration: Prove the optimal convergence of sample-aware entropy regularization,
e Diversity actor-critic (DAC): Practical implementation of sample-aware entropy framework,

e Adaptation scheme: Adaptive weighting factor in the mixture distribution.
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Sample-Aware Entropy Regularization

e ¢: the distribution of previous action samples stored in the replay buffer D.
e We draw current samples from policy 7 and store them in the replay buffer.

e The updated sample action distribution will be a mixture of 7 and ¢:

ey
qmm

=arm+ (1 —a)q. (3)
€ [0, 1]: Weighting factor of the mixture distribution.

e We regularizes the entropy of the mixture distribution H(q’:):

J(m) = Eryr

Z V(e + 5%(%”))] (4)

-> Previously sampled actions will be given low probabilities to make ¢’¢" uniform.
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A Toy Example

e Consider 1-step MDP with s is the unique initial state.

e There is N, discrete actions (A = {Ay, -+, Ay, }), and s; is the terminal state, and 7 is a

deterministic reward function.
e There are N, state-action pairs in total.

e We assume there are already /N, — 1 samples in the buffer
D = {(807 A17 T(507 Al))7 T (SO7 ANa—la T(507 ANa—l))}-

e To estimate ()-function for all possible pairs, the policy should sample the last action Ay, .
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A Toy Example

e Simple policy entropy maximization requires /N, samples on average to visit Ay, .

e ¢ is defined as q(ap|sg) = ﬁ for ag € {A1,-+ , An,—1} and q(An,|s0) = 0.

o If we set @ = - in ¢, = am + (1 — a)g, 7(Ay,|s0) = | maximizes H(q,;,).

e Thus, we only need one sample to visit the action Ay, .

> The proposed sample-aware entropy framework leads sample-efficient exploration!
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Ratio Function and Diverse Policy lteration

e ¢ estimation requires discretization/counting/dimension reduction - - -

e We aim to maximize J(7) by using the ratio function R™ without using explicit ¢.

an
R™ = . the ratio of am to ¢ (5)

arm+(1-a)g

e Diverse policy iteration: the optimal convergence proof in terms of R™ld?,

Theorem 1 (Diverse Policy Iteration). By repeating iteration of the diverse policy evaluation and
the diverse policy improvement, any initial policy converges to the optimal policy 7* s.t.

Q™ (s, a;) > Q7 (sy,a0), ¥V ' €11, Y (81, a4) € S x A. Also, such ©* achieves maximum J, i.c.,
Jox(m*) > Jr(m) for any m € I1.

Theorem 2. Suppose that the policy is parameterized with parameter #. Then, for parameterized

policy 7y, the two objective functions Jy, z

direction for 8 at 6 = 6, for all s; € S, where 6,4 is the parameter of the given current policy 4.

d(m(-[st)) and J, ld(m(-\st)) have the same gradient
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Diversity Actor-Critic

e Diversity actor-critic (DAC): practical implementation of sample-aware entropy regularized RL.
o R™Id can be estimated by R}’ based on density ratio estimation [Sugiyama et al., 2012].

o All objective/loss functions in DAC can be represented in terms of R}

A

J:(0) = Eg,op, apmomy | Qo(51, ar) + aclog Rz‘(st, a;) — alog mo(aslsy)], (6)
Jre(n) = Egop|aBq,r,llog R (1, a0)] + (1 — o) Eq,opllog(l — R (51, a))]], (7)
iQ(Cb) = ]E(sf at)~D ll(qu(st,at) Q(st,at)) ] 3 (8)

A

Lul) = Buep [50V0000 = V(507 )
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Experiments: Pure Exploration

e DAC has better sample-efficiency for exploration than other exploration methods.
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Figure 1: Pure exploration comparison
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Experiments: Sparse Rewarded Tasks

e Evaluation on SparseMujoco (Reward: 1 if the agent exceeds the threshold).

e Compared DAC with SAC baselines.

e DAC chooses more diverse action and visit more states, and it yields better performance.
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Figure 2: (a) Djg with o = 0.5 (b) state visitation (left) and the performance comparison (right) on Sparse-
Mujoco tasks
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Conclusion

We proposed,

1. Sample-aware entropy regularization that considers the previous distribution for better exploration.
2. Diverse policy iteration to guarantee the convergence.

3. Diversity actor-critic to implement sample-aware entropy regularized RL.

4. DAC shows better performance compared to SAC baselines and recent RL algorithms.
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