
Guan-Horng Liu (GaTech) DGNOpt: Dynamic Game Theoretic Neural Optimizer ICML 2021, July

Guan-Horng Liu, Tianrong Chen, Evangelos A. Theodorou

Georgia Institute of Technology
{ghliu, tianrong.chen, evangelos.theodorou}@gatech.edu

ICML 2021 (Long Talk)

Dynamic Game Theoretic Neural Optimizer



Guan-Horng Liu (GaTech) DGNOpt: Dynamic Game Theoretic Neural Optimizer ICML 2021, July

Dynamic Game Theoretic Neural Optimizer
A new class of optimizers for training DNNs that features

● Dynamical system and optimal control perspective
- Deep learning theory (Weinan et al., 2018; Hu et al., 2019; Liu & Theodorou, 2019)
- Computational acceleration (Gunther et al., 2020; Zhang et al., 2019)
- Optimal-control-inspired training methods (Liu et al., 2021; Li & Hao, 2018; Li et al., 2017)

● Game Theoretic interpretation
- Generalizes OC-inspired methods to a larger network class (e.g. ResNet)
- Novel algorithmic characterization from Nash equilibria standpoint 
- Enhance training with game-based applications (e.g. bandit analysis, robust control)

● Competitive performance on image classification while being computationally efficient and 
numerical stabler
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● Treat the propagation of each layer as a distinct time step of a nonlinear dynamical system.
● Interpret layer parameter as the time-varying control (Weinan et al., 2018; Liu & Theodorou, 2019).
● Rigorous optimization theory and new OC-inspired training method (Liu et al., 2021).
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● OC-inspired methods, by construction, rely on Markovian interpretation between DNNs and 
dynamical systems. This poses difficulties for training modern networks (e.g. ResNet, 
Inception) that heavily rely on non-Markovian dependencies between layers.
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● How should the Optimal Control perspective be modified in these cases? 
● Do we gain any new optimization insight from such a generalization (if any)?
● Can efficient computation be made possible?
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In a discrete-time N-player T-stage dynamic game, 
Player n commits to the action        at each stage t 
and seeks to minimize

where                                    and                                   .  
compute loss

prediction
output

data
input

Multi-Player
Dynamic Game



Guan-Horng Liu (GaTech) DGNOpt: Dynamic Game Theoretic Neural Optimizer ICML 2021, July

● Nash Equilibria                          is a set of 
stationary points where no players has the 
incentive to deviate, i.e.

where                         .

● Information structure         is a set of information 
available to Player n at stage t for making the 
action       . 

● Different information structures
  ⇨ Different Nash equilibria & optimality conditions 
  ⇨ Different classes of training methods
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: Collective actions of Player n over all stages
: Indices of all players except Player n 
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Characterize Optimizers via Information Structure
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: Collective actions of Player n over all stages
: Indices of all players except Player n 

3 information structures and their Nash equilibria
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Characterize Optimizers via Information Structure
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Connection between OLNE and baseline methods.

Iteratively solving the optimality condition of OLNE 
recovers the descent direction of standard training 
methods, e.g. SGD, RMSprop, Adam, KFAC, etc.

Proposition (informal; see our paper)

: Collective actions of Player n over all stages
: Indices of all players except Player n 
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Characterize Optimizers via Information Structure

Open-Loop Nash Equilibria (OLNE)

Feedback Nash Equilibria (FNE)

Cooperative/Group Rationality (GR)

DGNOpt iteratively solves FNE or GR.

● Minimal information structure (OLNE)
● Hamiltonian optimality condition
● Vector-form parameter update

Standard training methods (SGD, Adam, KFAC...)

● Richer information structures (FNE or GR)
● Bellman optimality condition 
● Feedback parameter update

Dynamic Game-theoretic Neural Optimizer

: Collective actions of Player n over all stages
: Indices of all players except Player n 
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Standard Vector vs. DGNOpt Feedback Update
● Computation graph of parameter update (using OLNE)

Open-Loop Nash Equilibria (OLNE)

stage sequence
(p)layer
vector update

● Formula of parameter update of Player n at stage t (using OLNE)

Stage t-1 Stage t Stage t+1
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Standard Vector vs. DGNOpt Feedback Update
● Computation graph of parameter update (using FNE)

Feedback Nash Equilibria (FNE)

stage sequence
(p)layer
vector update
feedback update

Stage t-1 Stage t Stage t+1

● Formula of parameter update of Player n at stage t (using FNE)
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Standard Vector vs. DGNOpt Feedback Update
● Computation graph of parameter update (using GR)

Cooperative/Group Rationality (GR)

stage sequence
(p)layer
vector update
feedback update
coop. vector update
coop. feedback update

Stage t-1 Stage t Stage t+1

● Formula of parameter update of Player n at stage t (using GR)
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Benefit of Richer Information & Feedback Update
● Improve accuracy (%) of best-tuned baselines across image classification datasets.

(i.e. enlarge information structure from OLNE to FNE/GR)
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Benefit of Richer Information & Feedback Update
● Improve accuracy (%) of best-tuned baselines across image classification datasets.
● Superior numerical stability when using unstable hyper-parameter (e.g. large LR).

  ⇨ Feedback compensates internal disturbance and stabilizes propagation. 
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Benefit of Richer Information & Feedback Update
● Improve accuracy (%) of best-tuned baselines across image classification datasets.
● Superior numerical stability when using unstable hyper-parameter (e.g. large LR).
● Computational efficient compared to second-order baseline.
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● Training process of DGNOpt exhibits ambiguity.

● Different alignment strategy yields different game structure.
  ⇨ What is the optimal alignment strategy?
  ⇨ Can we adapt the best-estimated alignment throughout
      training?

Algorithm DGNOpt

   Convert DNN to multi-player game.
   repeat 
      Sample data, forward pass, compute loss.
      Solve Nash equilibria with DGDNpt.
   until converges

Game-Theoretic Applications

t-1      t        t+1            
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Game-Theoretic Applications
● Integrate DGNOpt with multi-armed bandit (MAB) 

Algorithm DGNOpt with MAB

   Initialize MAB.
   repeat 
      Select an alignment m from MAB.  (pull an arm from MAB)
      Convert DNN to multi-player game based on m.
      Sample data, forward pass, compute loss.
      Solve Nash equilibria with DGDNpt.
      Compute accuracy and update MAB. (observe reward of this round, update MAB)
   until converges
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Game-Theoretic Applications
● Integrate DGNOpt with multi-armed bandit (MAB)  

Algorithm DGNOpt with MAB

   Initialize MAB.
   repeat 
      Select an alignment m from MAB.
      Convert DNN to multi-player game based on m.
      Sample data, forward pass, compute loss.
      Solve Nash equilibria with DGDNpt.
      Compute accuracy and update MAB.
   until converges
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Conclusion
Dynamic Game-theoretic Neural Optimizer (DGNOpt)
 is a new class of training optimizers that 

● advances the dynamical system methodology.
● introduces riguous game-theoretic analysis. 

(e.g. information structure, Nash equilibria)
● generalizes prior OC-inspired methods to accept 

generic (non-Markovian) DNNs.
● enables game-related applications. 

(e.g. bandit, robust control)
● strengthens Optimal Control as a principle tool of 

analyzing deep learning optimization. 

Paper Poster
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