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Problem Setup

We consider the following optimization problem:

min
µ,d ,b

∑
s∈S

ds,∗ (1a)

s.t. − N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k) (1b)

ds,k ≥ ||xs − µk ||2 (1c)∑
k∈K

bs,k = 1 (1d)

bs,k ∈ {0, 1} (1e)

s ∈ S, k ∈ K (1f)

◦◦ ◦ ◦ ◦xs ◦◦◦∗
µ1

∗
µ2

ds,1

ds,∗ = ds,2

bs,k =

{
1 If xs is in cluster k
0 otherwise

ds,k is the distance between xs
and the cluster center µk

ds,∗ is min
k

ds,k , k ∈ K
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Branch and Bound (BB) on Clustering Problem

Given a dataset D with m features and n samples, to cluster it into K
clusters:

I The scale of such problem has m(2n + K ) variables

I A three-cluster, two dimensional dataset with 1000 samples consists
of 4006 variables.

I BB in off-the-shelf solvers (CPLEX or Gurobi): branching on all
(integer) variables.

I Our approach: branching only on space of centers (µ) is enough to
guarantee the convergence. (# of branching variables: 6.)
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LB Strategy: Scenario Decomposition

Problem 1 can be reformulated as following optimization problem:

z(M) = min
µ∈M

∑
s∈S

Qs(µ) (2)

Qs(µ) = min
ds ,bs

ds,∗

s.t.− N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k)

ds,k ≥ ||xs − µk ||2∑
k∈K

bs,k = 1

bs,k ∈ {0, 1}, k ∈ K

(3)

which is equivalent to:

min
µs∈M

∑
s∈S

Qs(µs) (4a)

s.t. µs = µs+1, s ∈ {1, · · · ,S − 1} (4b)
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LB Strategy 1: Closed Form Solution

By relaxing the non-antipativity constraints 4b, we can obtain the lower
bounding problem as follow:

β(M) =
∑
s∈S

βs(M) = min
µs∈M

∑
s∈S

Qs(µs) (LB1)

It is easy to decompose the Problem LB1 into n subproblems, where n is
the number of samples of a dataset.

◦◦ ◦ ◦ ◦ ◦◦◦
µLk µUk◦Subproblem 1 | |

◦Subproblem 2 | |

◦Subproblem 8 | |
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LB Strategy 1: Closed Form Solution

For each scenario s, the lower bound function βs can be solved as follow:

βs(M) = min
k
βs,k(Mk) = min

k
min
µk∈Mk

||xs − µk ||2, (5)

where Mk := {µk | µLk ≤ µk ≤ µUk }
Advantage: βs,k has a closed form solution:

µk,i = mid{µLk,i , xs,i , µUk,i}, ∀i ∈ {1 · · ·m} (6)

◦
xs

µk = µUk |
µLk

|
µUk

◦
xs

µk = xs |
µLk

|
µUk

◦
xs

µ = µLk |
µLk

|
µUk
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LB Strategy 2: Lagrangean Decomposition

We dualized the non-anticipativity constraints and added to the objective
functions with Lagrange multipliers λ:

βLD(M, λ) := min
µ∈M
{
∑
s∈S

Qs(µs) +
S−1∑
s=1

λs(µs − µs+1)} (7)

Thus we solve the lagrangean dual problem:

βLD(M) = max
λ
βLD(M, λ). (LB2)

Lemma

β(M) = βLD(M, 0) ≤ βLD(M) ≤ z(M)
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LB Strategy 3: Adaptive Sample Grouping

We assign group of samples into one subproblem

min
µg∈M

∑
g∈G

Qg (µg ) (8a)

s.t. µg = µg+1, g ∈ {1, · · · ,G − 1}. (8b)

Thus, we have lower bounding problem by relaxing 8b:

βSG (M) =
∑
g∈G

βSGg (M) = min
µg∈M

∑
g∈G

Qg (µg ) (LB3)

x1 x2 x3 x4 x5 x8x7x6

x1 x4 x5 x8Subproblem 1
x2 x3 x6 x7Subproblem 2

Key: group member assignment

Lemma

β(M) ≤ βSG (M) ≤ z(M)
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Upper Bounding Problem

Two strategies to construct upper bound:

I Fix µ at a candidate solution µ̂ ∈ M, we get an upper bound:

α(M) =
∑
s∈S

Qs(µ̂) (UB1)

I Solve the following NLP problem to local minimum:

α(M) = min
µ∈M,b

∑
s∈S

∑
k∈K

bs,k ||xs − µk ||2∑
k∈K

bs,k = 1

0 ≤ bs,k ≤ 1, s ∈ S, k ∈ K

(UB2)

Theorem

Construct LB ∈ {LB1, LB2, LB3}, UB ∈ {UB1,UB2}, the BB procedure
converges by branching only on µ (center of clusters).
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Experiment Analysis

Table 1: Comparison on datasets with state of the art. (k = 2)

Methods UB Nodes Gap(%)

Padberg and Rinald’s Dataset (n = 2, 392, d = 2)
Aloise et al., 2012 2.967x1010 1 i1 (50h)

serial 2.967x1010 7 1.32 (4h)
serial 2.967x1010 253 0.1 (11h)

20 cores 2.967x1010 247 0.1 (1h)

Glass Identification (n = 214, d = 9)
Aloise et al., 2012 cannot be solved

serial 819.63 85 28.65 (4h)
serial 819.63 339 0.1 (9h)

20 cores 819.63 415 0.1 (1h)

Table 2: Performance of large dataset in parallel. (200 cores, k = 3)

Dataset UB Nodes Gap(%)

Syn-210000 2.43x106 6 2.55

1Solved at the root node.
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Contributions

Our work contributes for the following benefits:

I We provided a guaranteed global optimal solution for the minimum
sum-of-squares clustering problem.

I By reformulating the clustering problem as a two-stage stochastic
program problem, we proposed a tailed reduced space BB clustering
algorithm that enables insensitivity to the scale of samples.

I By constructing proper upper and lower bounding problem, we are
able to deal with datasets over 200,000 samples in a relatively short
time (6 4h).
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