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Problem Setup

We consider the following optimization problem:

min g ds 4
w,d,b ’
seS

s.t. — N(l — b57k) < ds’* — ds,k < N(l — bs,k)

ds i > [|xs — puxe||?

1 If xs is in cluster k
s,k —

Z bey =1 0 otherwise
kek ds « is the distance between x;
bsx € {0,1} and the cluster center i

seS,kek

ds  is mkin dsi, k€ K

ds,l

M1 gs 2
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Branch and Bound (BB) on Clustering Problem

Given a dataset D with m features and n samples, to cluster it into K
clusters:

» The scale of such problem has m(2n + K) variables

» A three-cluster, two dimensional dataset with 1000 samples consists
of 4006 variables.

» BB in off-the-shelf solvers (CPLEX or Gurobi): branching on all
(integer) variables.

» Our approach: branching only on space of centers (i) is enough to
guarantee the convergence. (# of branching variables: 6.)
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LB Strategy: Scenario Decomposition

Problem 1 can be reformulated as following optimization problem

= m|n ZQS

SES
QS(,LL) = g:,lt?s ds *
5.6 — N(L— b ) < ds.s
Ao = [|xs — NkH2
> bok =

ke

bsx €{0,1},k e K
which is equivalent to:
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LB Strategy 1: Closed Form Solution

By relaxing the non-antipativity constraints 4b, we can obtain the lower
bounding problem as follow:

BM) = B(M) = min > Qs(us) (LB1)
ses = ses

It is easy to decompose the Problem LB1 into n subproblems, where n is
the number of samples of a dataset.
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LB Strategy 1: Closed Form Solution

For each scenario s, the lower bound function 8s can be solved as follow:

(M) = min B (M) = min min [lx; — s . (5)
where My := {p | pp < pe < il }
Advantage: [, « has a closed form solution:
Lok,i = mid{u?i,xs,;,pg’,},w e{l---m} (6)
puk = i} 9 /'{i /z{ij
S //{i 2 //,{g
p= g /z{i /[ilkj g
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LB Strategy 2: Lagrangean Decomposition

We dualized the non-anticipativity constraints and added to the objective
functions with Lagrange multipliers A:

5-1
5LD(M7 A) = L‘;‘,\r}l{z Qs(ps) + Z As(tts — ps+1)} (7)
s=1

seS

Thus we solve the lagrangean dual problem:

BP(M) = m)‘:axﬂLD(l\/I, A). (LB2)

B(M) = P(M,0) < BHP(M) < z(M)
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LB Strategy 3: Adaptive Sample Grouping

We assign group of samples into one subproblem

m|n Z Qg (1) (8a)
ngeM e
st. pg = pg+1,8 €{1,---,G -1} (8b)
Thus, we have lower bounding problem by relaxing 8b:
BC(M) =) 26 (M) = min n > Qslig) (LB3)
-89 geg
Subproblem 1 T 4

(¢))

Subproblem 2 >

(Key: group member assignment)

B(M) < B3¢(M) < z(M)
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Upper Bounding Problem

Two strategies to construct upper bound:
» Fix p at a candidate solution ji € M, we get an upper bound:

a(M) = 3 Qu() (UBY)
seS

» Solve the following NLP problem to local minimum:

a(M) = Mg\i/;jb D bellxs — pl?
seS kel
S b =1 (UB2)
ke

0<bsk<1l,scS keck

Construct LB € {LB1,LB2,LB3}, UB € {UB1, UB2}, the BB procedure
converges by branching only on u (center of clusters).
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Experiment Analysis

Table 1: Comparison on datasets with state of the art. (k = 2)

METHODS UB Nopes  Gapr(%)
Padberg and Rinald’s Dataset (n =2,392,d = 2)

ALOISE ET AL., 2012 2.967x10%° 1 i1 (50h)
SERIAL 2.967x10%° 7 1.32 (4h)
SERIAL 2.967x101° 253 0.1 (11h)

20 CORES 2.967x101° 247 0.1 (1h)
Glass Identification (n = 214,d =9)

ALOISE ET AL., 2012 CANNOT BE SOLVED
SERIAL 819.63 85 28.65 (4h)
SERIAL 819.63 339 0.1 (9h)

20 CORES 819.63 415 0.1 (1h)

Table 2: Performance of large dataset in parallel. (200 cores, k = 3)
DATASET UB NoDEs GAP(%)

Syn-210000  2.43x10° 6 2.55

1Solved at the root node.
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Contributions

Our work contributes for the following benefits:
» We provided a guaranteed global optimal solution for the minimum
sum-of-squares clustering problem.

» By reformulating the clustering problem as a two-stage stochastic
program problem, we proposed a tailed reduced space BB clustering
algorithm that enables insensitivity to the scale of samples.

» By constructing proper upper and lower bounding problem, we are
able to deal with datasets over 200,000 samples in a relatively short
time (< 4h).

Kaixun Hua, Mingfei Shi, Yankai Cao (UBC) Scalable Deterministic Global Clustering 11 /11



