A Scalable Deterministic Global Optimization Algorithm for Clustering Problems

Kaixun Hua, Mingfei Shi, Yankai Cao

Cao's Research Group

Department of Chemical and Biological Enigneering

University of British Columbia

Problem Setup

B

We consider the following optimization problem:

$$\min_{\mu,d,b} \sum_{s \in S} d_{s,*}$$
(1a)
s.t. $-N(1-b_{s,k}) \leq d_{s,*} - d_{s,k} \leq N(1-b_{s,k})$
(1b)

$$\frac{d_{s,k} \geq ||x_s - \mu_k||^2}{\sum_{k \in \mathcal{K}} b_{s,k} = 1}$$

$$b_{s,k} \in \{0,1\}$$

$$s \in S, k \in \mathcal{K}$$

$$\frac{d_{s,k} \text{ is the distance between } x_s}{\sum_{k \in \mathcal{K}} m d_{s,k}, k \in \mathcal{K}}$$
(1c)

$$(1c)$$

$$(1d)$$

$$(1d)$$

$$(1e)$$

$$(1e)$$

$$\frac{d_{s,1}}{d_{s,1}}$$

$$\frac{d_{s,1}}{d_{s,*} = d_{s,2}}$$

Given a dataset D with m features and n samples, to cluster it into K clusters:

- The scale of such problem has m(2n + K) variables
- A three-cluster, two dimensional dataset with 1000 samples consists of 4006 variables.
- BB in off-the-shelf solvers (CPLEX or Gurobi): branching on all (integer) variables.
- ► Our approach: branching only on space of centers (µ) is enough to guarantee the convergence. (# of branching variables: 6.)

LB Strategy: Scenario Decomposition

Problem 1 can be reformulated as following optimization problem:

$$z(M) = \min_{\mu \in M} \sum_{s \in S} Q_s(\mu)$$

$$Q_s(\mu) = \min_{d_s, b_s} d_{s,*}$$
s.t. $-N(1 - b_{s,k}) \le d_{s,*} - d_{s,k} \le N(1 - b_{s,k})$

$$d_{s,k} \ge ||x_s - \mu_k||^2$$

$$\sum_{k \in \mathcal{K}} b_{s,k} = 1$$

$$b_{s,k} \in \{0, 1\}, k \in \mathcal{K}$$

$$(2)$$

which is equivalent to:

$$\min_{\mu_{s} \in \mathcal{M}} \sum_{s \in \mathcal{S}} Q_{s}(\mu_{s})$$
s.t.
$$\mu_{s} = \mu_{s+1}, s \in \{1, \cdots, \mathcal{S} - 1\}$$
(4a)
(4b)

LB Strategy 1: Closed Form Solution

B

By relaxing the non-antipativity constraints 4b, we can obtain the lower bounding problem as follow:

$$\beta(M) = \sum_{s \in S} \beta_s(M) = \min_{\mu_s \in M} \sum_{s \in S} Q_s(\mu_s)$$
(LB1)

It is easy to decompose the Problem LB1 into n subproblems, where n is the number of samples of a dataset.

For each scenario s, the lower bound function β_s can be solved as follow:

$$\beta_s(M) = \min_k \beta_{s,k}(M_k) = \min_k \min_{\mu_k \in M_k} ||x_s - \mu_k||^2,$$
(5)

where $M_k := \{\mu_k \mid \mu_k^L \le \mu_k \le \mu_k^U\}$ Advantage: $\beta_{s,k}$ has a closed form solution:

$$\mu_{k,i} = \operatorname{mid}\{\mu_{k,i}^{L}, x_{s,i}, \mu_{k,i}^{U}\}, \forall i \in \{1 \cdots m\}$$

$$(6)$$

We dualized the non-anticipativity constraints and added to the objective functions with Lagrange multipliers λ :

$$\beta^{LD}(M,\lambda) := \min_{\mu \in \mathcal{M}} \{ \sum_{s \in \mathcal{S}} Q_s(\mu_s) + \sum_{s=1}^{S-1} \lambda_s(\mu_s - \mu_{s+1}) \}$$
(7)

Thus we solve the lagrangean dual problem:

$$\beta^{LD}(M) = \max_{\lambda} \beta^{LD}(M, \lambda).$$
 (LB2)

Lemma

$$\beta(M) = \beta^{LD}(M, 0) \le \beta^{LD}(M) \le z(M)$$

LB Strategy 3: Adaptive Sample Grouping

We assign group of samples into one subproblem

$$\min_{\mu_g \in \mathcal{M}} \sum_{g \in \mathcal{G}} Q_g(\mu_g)$$
(8a)

s.t.
$$\mu_g = \mu_{g+1}, g \in \{1, \cdots, \mathcal{G} - 1\}.$$
 (8b)

Thus, we have lower bounding problem by relaxing 8b:

$$\beta^{SG}(M) = \sum_{g \in \mathcal{G}} \beta_g^{SG}(M) = \min_{\mu_g \in M} \sum_{g \in \mathcal{G}} Q_g(\mu_g)$$
(LB3)

$$\xrightarrow{X_1 X_2 X_3 X_4} \xrightarrow{X_5 X_6 X_7 X_8}$$
Subproblem 1
$$\xrightarrow{X_1 X_2 X_3} \xrightarrow{X_4} \xrightarrow{X_5 X_6 X_7 X_8}$$
Subproblem 2
$$\xrightarrow{X_2 X_3} \xrightarrow{X_4 X_5 X_6 X_7}$$
(Key: group member assignment)

Lemma

$$\beta(M) \leq \beta^{SG}(M) \leq z(M)$$

Kaixun Hua, Mingfei Shi, Yankai Cao (UBC)

Upper Bounding Problem

Two strategies to construct upper bound:

Fix μ at a candidate solution $\hat{\mu} \in M$, we get an upper bound:

$$\alpha(M) = \sum_{s \in S} Q_s(\hat{\mu}) \tag{UB1}$$

► Solve the following NLP problem to local minimum:

$$\alpha(M) = \min_{\mu \in M, b} \sum_{s \in S} \sum_{k \in \mathcal{K}} b_{s,k} ||x_s - \mu_k||^2$$

$$\sum_{k \in \mathcal{K}} b_{s,k} = 1$$

$$0 \le b_{s,k} \le 1, s \in S, k \in \mathcal{K}$$
(UB2)

Theorem

Construct $LB \in \{LB1, LB2, LB3\}$, $UB \in \{UB1, UB2\}$, the BB procedure converges by branching only on μ (center of clusters).

Kaixun Hua, Mingfei Shi, Yankai Cao (UBC)

Table 1: Comparison on datasets with state of the art. (k = 2)

Methods	UB	Nodes	$\operatorname{Gap}(\%)$	
Padberg and Rinald's Dataset $(n = 2, 392, d = 2)$				
Aloise et al., 2012	2.967x10 ¹⁰	1	i^1 (50 <i>h</i>)	
SERIAL	2.967x10 ¹⁰	7	1.32~(4h)	
SERIAL	2.967x10 ¹⁰	253	$0.1 \ (11h)$	
20 cores	2.967×10^{10}	247	0.1 (1h)	
Glass Identification $(n = 214, d = 9)$				
Aloise et al., 2012	CANNOT BE SOLVED			
SERIAL	819.63	85	28.65~(4h)	
SERIAL	819.63	339	0.1 (9h)	
20 cores	819.63	415	0.1 (1h)	

Table 2: Performance of large dataset in parallel. (200 cores, k = 3)

Dataset	UB	Nodes	$\operatorname{Gap}(\%)$
Syn-210000	2.43x10 ⁶	6	2.55

¹Solved at the root node.

Kaixun Hua, Mingfei Shi, Yankai Cao (UBC)

Our work contributes for the following benefits:

- ► We provided a guaranteed global optimal solution for the minimum sum-of-squares clustering problem.
- ▶ By reformulating the clustering problem as a two-stage stochastic program problem, we proposed a tailed reduced space BB clustering algorithm that enables insensitivity to the scale of samples.
- By constructing proper upper and lower bounding problem, we are able to deal with datasets over 200,000 samples in a relatively short time (≤ 4h).