

Learning intra-batch connections for deep metric learning

Jenny Seidenschwarz, Ismail Elezi, Laura Leal-Taixé

Technical University of Munich

Deep Metric Learning (DML)

Goal: Learn distance functions over objects such that:

Low similarity score (large distance)

High similarity score (small distance)

→ Test time: simple threshold or nearest neighbors

Deep Metric Learning (DML)

- Dataset of N samples contains $O(N^2)$ pairs and $O(N^3)$ triplets
- Vast majority is uninformative which leads slow convergence
- → Special sampling techniques required

Training with contrastive and triplet loss

In a batch of size B contrastive and triplet loss only take $\frac{B}{2}$ and $\frac{2B}{3}$ relations into account, while there are B^2 relations in a batch

Could we take the global batch structure into account?

Our approach

Our approach...

...utilizes a message pasisng network

...exchange contextual information

... take the global structure into account

Learning Intra-Batch Connections

 Feature initialization using a backbone CNN

Learning Intra-Batch Connections

1. Feature initialization using a backbone CNN

2. Create graph and let samples communicate

Learning Intra-Batch Connections

- 1. Feature initialization using a backbone CNN
- 2. Create graph and let samples communicate

3. Optimize CNN and MPN end-to-end

Message Passing Networks

$$h_i^{(l+1)} = \sum_{n=1}^{N} \alpha_{in}^l W^l h_n^{(l)}$$

Optimization and Inference

Optimization:

- We optimize backbone CNN and MPN in an end-to-end fashion
- We can apply cross-entropy loss on updated node feature vectors

Inference:

 As we optimize in end-to-end fashion we can use backbone CNN during inference

We do not add any complexity at test time!

Results

		CUB-200-2011					CARS196					Stanford Online Products			
Method	BB	R@1	R@2	R@4	R@8	NMI	R@1	R@2	R@4	R@8	NMI	R@1	R@10	R@100	NMI
Triplet ⁶⁴ (Schroff et al., 2015) CVPR15	G	42.5	55	66.4	77.2	55.3	51.5	63.8	73.5	82.4	53.4	66.7	82.4	91.9	89.5
Npairs ⁶⁴ (Sohn, 2016) NeurIPS16	G	51.9	64.3	74.9	83.2	60.2	68.9	78.9	85.8	90.9	62.7	66.4	82.9	92.1	87.9
Deep Spectral ⁵¹² (Law et al., 2017) ICML17	BNI	53.2	66.1	76.7	85.2	59.2	73.1	82.2	89.0	93.0	64.3	67.6	83.7	93.3	89.4
Angular Loss ⁵¹² (Wang et al., 2017) ICCV17	G	54.7	66.3	76	83.9	61.1	71.4	81.4	87.5	92.1	63.2	70.9	85.0	93.5	88.6
Proxy-NCA ⁶⁴ (Movshovitz-Attias et al., 2017) ICCV17	BNI	49.2	61.9	67.9	72.4	59.5	73.2	82.4	86.4	88.7	64.9	73.7	-	-	90.6
Margin Loss ¹²⁸ (Manmatha et al., 2017) ICCV17	R50	63.6	74.4	83.1	90.0	69.0	79.6	86.5	91.9	95.1	69.1	72.7	86.2	93.8	90.7
Hierarchical triplet ⁵¹² (Ge et al., 2018) ECCV18	BNI	57.1	68.8	78.7	86.5	-	81.4	88.0	92.7	95.7	-	74.8	88.3	94.8	-
ABE ⁵¹² (Kim et al., 2018) ECCV18	G	60.6	71.5	79.8	87.4	-	85.2	90.5	94.0	96.1	-	76.3	88.4	94.8	-
Normalized Softmax ⁵¹² (Zhai & Wu, 2019) BMVC19	R50	61.3	73.9	83.5	90.0	69.7	84.2	90.4	94.4	96.9	74.0	78.2	90.6	96.2	91.0
RLL-H ⁵¹² (Wang et al., 2019b) CVPR19	BNI	57.4	69.7	79.2	86.9	63.6	74	83.6	90.1	94.1	65.4	76.1	89.1	95.4	89.7
Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	65.7	77.0	86.3	91.2	-	84.1	90.4	94.0	96.5	-	78.2	90.5	96.0	-
Relational Knowledge ⁵¹² (Park et al., 2019) CVPR19	G	61.4	73.0	81.9	89.0	-	82.3	89.8	94.2	96.6	-	75.1	88.3	95.2	-
Divide and Conquer 1028 (Sanakoyeu et al., 2019) CVPR19	R50	65.9	76.6	84.4	90.6	69.6	84.6	90.7	94.1	96.5	70.3	75.9	88.4	94.9	90.2
SoftTriple Loss ⁵¹² (Qian et al., 2019) ICCV19	BNI	65.4	76.4	84.5	90.4	69.3	84.5	90.7	94.5	96.9	70.1	78.3	90.3	95.9	92.0
HORDE ⁵¹² (Jacob et al., 2019) <i>ICCV19</i>	BNI	66.3	76.7	84.7	90.6	-	83.9	90.3	94.1	96.3	-	80.1	91.3	96.2	-
MIC ¹²⁸ (Brattoli et al., 2019) ICCV19	R50	66.1	76.8	85.6	-	69.7	82.6	89.1	93.2	-	68.4	77.2	89.4	95.6	90.0
Easy triplet mining ⁵¹² (Xuan et al., 2020b) WACV20	R50	64.9	75.3	83.5	-	-	82.7	89.3	93.0	-	-	78.3	90.7	96.3	-
Group Loss ¹⁰²⁴ (Elezi et al., 2020) ECCV20	BNI	65.5	77.0	85.0	91.3	69.0	85.6	91.2	94.9	97.0	72.7	75.1	87.5	94.2	90.8
Proxy NCA++512 (Teh et al., 2020) ECCV20	R50	66.3	77.8	87.7	91.3	71.3	84.9	90.6	94.9	97.2	71.5	79.8	91.4	96.4	-
DiVA ⁵¹² (Milbich et al., 2020) ECCV20	R50	69.2	79.3	-	-	71.4	87.6	92.9	1-	-	72.2	79.6	-	-	90.6
PADS ¹²⁸ (Roth et al., 2020) CVPR20	R50	67.3	78.0	85.9	-	69.9	83.5	89.7	93.8	-	68.8	76.5	89.0	95.4	89.9
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	BNI	68.4	79.2	86.8	91.6	-	86.1	91.7	95.0	97.3	-	79.1	90.8	96.2	-
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	R50	69.7	80.0	87.0	92.4	-	87.7	92.9	95.8	97.9	-	80.0	91.7	96.6	-
Proxy Few ⁵¹² (Zhu et al., 2020) NeurIPS20	BNI	66.6	77.6	86.4	_	69.8	85.5	91.8	95.3	_	72.4	78.0	90.6	96.2	90.2
Ours ⁵¹²	R50	70.3	80.3	87.6	92.7	74.0	88.1	93.3	96.2	98.2	74.8	81.4	91.3	95.9	92.6
												-			

In-Shop									
Method	BB	R@1	R@10	R@20	R@40				
FashionNet ⁴⁰⁹⁶ (Liu et al., 2016) CVPR16	V	53.0	73.0	76.0	79.0				
A-BIER ⁵¹² (Opitz et al., 2020) <i>PAMI20</i>	G	83.1	95.1	96.9	97.8				
ABE ⁵¹² (Kim et al., 2018) ECCV18	G	87.3	96.7	97.9	98.5				
Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	89.7	97.9	98.5	99.1				
Learning to Rank ⁵¹² (Çakir et al., 2019)	R50	90.9	97.7	98.5	98.9				
HORDE ⁵¹² (Jacob et al., 2019) <i>ICCV19</i>	BNI	90.4	97.8	98.4	98.9				
MIC ¹²⁸ (Brattoli et al., 2019) ICCV19	R50	88.2	97.0	98.0	98.8				
Proxy NCA++512 (Teh et al., 2020) ECCV20	R50	90.4	98.1	98.8	99.2				
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	BNI	91.5	98.1	98.8	99.1				
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	R50	92.1	98.1	98.7	99.2				
Ours ⁵¹²	R50	92.8	98.5	99.1	99.2				

Results

State-of-the-art results on 4 public datasets

Cars196 In-Shop CUB-200-2011 Stanford Online Products

Correct class

Incorrect class

Results

• Clustering performance on CUB-200-2011

Want to know more?

https://dvl.in.tum.de

Jenny Seidenschwarz

Ismail Elezi

Laura Leal-Taixé