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Implicit Bias

➢ Deep neural networks usually generalize well despite most   
of their local minima generalize poorly.

➢ Implicit bias is one plausible explanation, the intuition of 
which is optimization algorithms implicitly regularize the 
training process and find the minimum which generalizes 
well.



Implicit Bias

➢ There are different interpretations for implicit bias:
➢ (Indirectly) the escaping rate from saddle point, flat minima

➢ (Directly) the convergent point in 𝐿2 regression

➢ (Directly) the convergent direction in logistic regression (This paper)

➢ It is a standard practice to study the form of convergent direction in 
logistic regression for homogeneous neural networks.



Adaptive Optimizers

➢ Adaptive optimizers are a series of gradient-based optimizers which 
utilize the historical gradient information to adjust the learning rate 
component-wisely.

➢ The general update rule:
𝑤 𝑡 + 1 − 𝑤 𝑡 = −ℎ 𝑡 ⊙ ∇ℒ(𝑤(𝑡))

➢ ℎ(𝑡) is the conditioner

➢ ∇ℒ is the gradient empirical loss

➢⊙ is the component wise multiplication (Hadamard product)



Adaptive Optimizers

➢ They have been shown (empirically) to achieve faster convergent 
rate than vanilla GD/SGD, but (sometimes) worse generalization 
performance

➢ The implicit bias for adaptive optimizers?



Related Work:

➢ The implicit bias of gradient descent (GD) has been well studied.
➢ Lyu & Li (2019) shows that for logistic regression task, GD on homogeneous 

neural networks drives the parameter towards the direction of some KKT 
point of the corresponding 𝐿2 max-margin problem: 

min 𝑤 2 𝑠. 𝑡. yiΦ(𝑤, 𝑥𝑖) ≥ 1 ∀ 𝑖 ∈ [𝑁]

➢ Ali et al. (2020) shows that for linear 𝐿2 regression using SGLD with SGD noise 
covariance, the parameter at time 𝑡 is close to the ridge regression estimate 

with tuning parameter 
1

𝑡
.



Related Work

➢(Qian & Qian, 2019) proves the convergent direction of AdaGrad on 
linear logistic regression.

➢There is little theoretical analysis on the generalization performance 
of adaptive optimizers, especially in the non-linear logistic case or 
from the viewpoint of implicit bias.
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Problem Setups
➢ Let { 𝑥1, 𝑦1 , ⋯ , (𝑥𝑁, 𝑦𝑁)} be the sample set. Let Φ(𝑤, 𝑥) be the 

output(prediction) of neural network Φ with parameter 𝑤 and data 𝑥.

➢ We use 𝑤(𝑡) as the parameter at time 𝑡.

➢ We use Clarke’s sub-gradient  ҧ𝜕.

➢ We focus on logistic regression with loss ℓ = ℓ𝑒𝑥𝑝 and ℓ = ℓ𝑙𝑜𝑔. Given 
sample 𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑁 , the empirical loss for parameter 𝑤 is defined as 
ℒ(𝑤) = σ𝑖=1

𝑁 ℓ(𝑦𝑖Φ(𝑤, 𝑥𝑖)).



Adaptive Optimizers (discrete form)

➢ The discrete form of the optimizers:
𝑤 𝑡 + 1 − 𝑤(𝑡) = −ℎ 𝑡 ⊙ ҧ𝜕ℒ(𝑤(𝑡))

For AdaGrad, ℎ 𝑡 −1 = 𝜀𝟏𝒑 + σ𝜏=0
𝑡 ҧ𝜕ℒ 𝑤 𝜏

2
.

For RMSProp, ℎ 𝑡 −1 = 𝜀𝟏𝒑 + σ𝜏=0
𝑡 1 − 𝑏 𝑒− 1−𝑏 𝑡−𝜏 ҧ𝜕ℒ 𝑤 𝜏

2
.

For Adam (w/m), ℎ 𝑡 −1 = 𝜀𝟏𝒑 +
σ𝜏=0
𝑡 1−𝑏 𝑒− 1−𝑏 𝑡−𝜏 ഥ𝜕ℒ 𝑤 𝜏

2

1−𝑏𝑡
.

For any optimizer, ℎ∞ = lim
𝑡→∞

ℎ(𝑡).
𝜀 is a constant added to avoid the conditioner 

being zero.



Adaptive Optimizers (continuous form)

➢ The continuous form of the optimizers:
𝑑𝑤(𝑡)

𝑑𝑡
= −ℎ 𝑡 ⊙ ҧ𝜕ℒ(𝑤(𝑡))

For AdaGrad, ℎ 𝑡 −1 = 𝜀𝟏𝒑 + 0׬
𝑡 ҧ𝜕ℒ 𝑤 𝜏

2
𝑑𝜏.

For RMSProp, ℎ 𝑡 −1 = 𝜀𝟏𝒑 + 0׬
𝑡
1 − 𝑏 𝑒− 1−𝑏 𝑡−𝜏 ҧ𝜕ℒ 𝑤 𝜏

2
𝑑𝜏.

For Adam (w/m), ℎ 𝑡 −1 = 𝜀𝟏𝒑 +
0׬
𝑡
1−𝑏 𝑒− 1−𝑏 𝑡−𝜏 ഥ𝜕ℒ 𝑤 𝜏

2
𝑑𝜏

1−𝑏𝑡
.

For any optimizer, ℎ∞ = lim
𝑡→∞

ℎ(𝑡).



Assumptions

➢ We need several mild assumptions:
➢ For continuous case:

➢ The neural network is locally Lipschitz with respect to parameter

➢ The neural network is homogenous

➢ There exists a time when NN achieves correct classification 

➢ For discrete case, two additional assumption are needed:
➢ The neural network is 𝑀 smooth with respect to the parameter

➢ The learning rate is upper bounded and lower bounded. 



Main Theorem

Theorem: Under the assumptions, (1) for AdaGrad(continuous
/discrete), any limit point (𝑡 → ∞) of parameter direction 𝑤𝑡/ 𝑤𝑡 2 is 
a KKT point of the following optimization problem:

min ℎ∞
−1/2

⊙𝑤
2

𝑠. 𝑡. 𝑦𝑖Φ(𝑤, 𝑥𝑖) ≥ 1 ∀ 𝑖 ∈ 𝑁 ;

(2) for RMSProp and Adam without momentum(continuous/discrete), 
the direction is a KKT point of 

min 𝑤 2 𝑠. 𝑡. y𝑖Φ(𝑤, 𝑥𝑖) ≥ 1 ∀ 𝑖 ∈ [𝑁].



Discussions

➢ Our results shows RMSProp, Adam (w/m) and GD share similar 
generalization property in terms of margin, while AdaGrad has worse 
performance and sensitive to initialization

➢The exponential weighted design in the conditioner and 𝜀 accelerate 
the training process before convergence, and still lead to the max-
margin solution.



Extensions

➢ A simple modification of the proof can lead to the results of multi-
class classification, where only the constraints 𝑦𝑖Φ 𝑤, 𝑥𝑖 ≥ 1 are 
changed into Φ 𝑤, 𝑥𝑖 𝑦𝑖

− Φ 𝑤, 𝑥𝑖 𝑗
≥ 1.

➢While there is not necessarily only one limit point, the definability 
condition (used in (Ji & Telgarsky, 2020)) can ensure this.



Proof Sketch

Adaptive Gradient Flow 
(AGF)

𝑑𝑣(𝑡)

𝑑𝑡
= −𝛽 𝑡 ⊙ ҧ𝜕ℒ(𝑣(𝑡)) with

➢ lim
𝑡→∞

𝛽 𝑡 = 𝟏𝒑

➢
𝑑 log(𝛽(𝑡))

𝑑𝑡
is Lebesgue Integrable



Proof Sketch

Adaptive Gradient Flow 
(AGF)

Convergent direction of 
AGF

➢ Define surrogate margin as ෤𝛾(𝑡) =
ℓ−1(ℒ(𝑣(𝑡)))

𝛽 𝑡
−
1
2⊙𝑣 𝑡

𝐿;

➢ Prove surrogate margin is lower bounded;

➢ Use surrogate margin to bound derivatives and prove loss 
converges to zero;

➢ Prove for every limit point of parameter direction ҧ𝑣∗, there 
exists a sequence 𝑣(𝑡𝑖) converges to ҧ𝑣∗, with 𝑣(𝑡𝑖) satisfies 
(𝜀𝑖 , 𝛿𝑖) approximately KKT condition, lim

𝑖→∞
𝜀𝑖 = 0, and lim

𝑖→∞
𝛿𝑖 =

0;

➢ By Mangasarian-Fromovitz constraint qualification, ҧ𝑣∗ is then a 
KKT point.



Proof Sketch

Adaptive Gradient Flow 
(AGF)

Convergent direction of 
AGF

Adaptive optimizer obeys 
AGF (after normalization)

➢ For AdaGrad, h∞ ≡ lim
𝑡→∞

1

1+𝑚(𝑡)
exists and is non-zero, while for    

RMSProp and Adam (w/m), ℎ∞ =
1

𝜀
𝟏𝑝. Therefore, 𝑣(𝑡) ≡ ℎ∞

−1/2
⊙𝑤(𝑡)

is well defined.

➢ 𝑣(𝑡) obeys adaptive gradient flow by a key observation that 

0׬
∞ ҧ𝜕ℒ 𝑤 𝑡

2
𝑑𝑡 < ∞.
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Observation of Margin

➢ Margin and test accuracy of RMSProp and Adam (w/m) are 
significantly larger than those of AdaGrad.

We run the experiment on MNIST dataset with a four-layer CNN.



Directions of ℎ∞

➢ The directions of ℎ∞ of RMSProp and Adam(w/m) are isotropic, 
while that of AdaGrad is not and varies with initialization.

We run the experiment of a linear separable dataset with dimension 2 and parameter dimension 3.

(b) ℎ∞
−1/2

in RMSProp (c) ℎ∞
−1/2

in Adam (w/m)(a) ℎ∞
−1/2

in AdaGrad

isotropic direction



Effect of 𝜀

➢ Larger 𝜀 leads to larger test accuracy and larger margin.

We run the experiment on MNIST dataset with a four-layer CNN.



Thank you!
For any question, please feel free to drop a mail at

v-bohanwang@microsoft.com.


