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Implicit Bias

Deep neural networks usually generalize well despite most
of their local minima generalize poorly.

Implicit bias is one plausible explanation, the intuition of
which is optimization algorithms implicitly regularize the
training process and find the minimum which generalizes
well.



Implicit Bias

There are different interpretations for implicit bias:
(Indirectly) the escaping rate from saddle point, flat minima
(Directly) the convergent point in L? regression
(Directly) the convergent direction in logistic regression (This paper)

It is a standard practice to study the form of convergent direction in
logistic regression for homogeneous neural networks.
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Adaptive Optimizers

Adaptive optimizers are a series of gradient-based optimizers which
utilize the historical gradient information to adjust the learning rate
component-wisely.

The general update rule:
w(t+1) —w(t) = —h(t) © VL(w(t))
h(t) is the conditioner
VL is the gradient empirical loss
(® is the component wise multiplication (Hadamard product)
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Adaptive Optimizers

They have been shown (empirically) to achieve faster convergent
rate than vanilla GD/SGD, but (sometimes) worse generalization
performance

The implicit bias for adaptive optimizers?
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Related Work:

The implicit bias of gradient descent (GD) has been well studied.

Lyu & Li (2019) shows that for logistic regression task, GD on homogeneous
neural networks drives the parameter towards the direction of some KKT
point of the corresponding L? max-margin problem:

min |[w]|? s.t. y;®(w,x;) =1 Vi€ [N]

Ali et al. (2020) shows that for linear L? regression using SGLD with SGD noise
covariance, the parameter at time t is close to the ridge regression estimate

: . 1
with tuning parameter -



=" Microsoft

Related Work

(Qian & Qian, 2019) proves the convergent direction of AdaGrad on
linear logistic regression.

There is little theoretical analysis on the generalization performance
of adaptive optimizers, especially in the non-linear logistic case or
from the viewpoint of implicit bias.
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Problem Setups

Let {(x1, V1), , (xn, Yy )} be the sample set. Let ®(w, x) be the
output(prediction) of neural network ® with parameter w and data x.

We use w(t) as the parameter at time t.
We use Clarke’s sub-gradient 4.

We focus on Ioglstlc regression with loss £ = £, and £ = £;,,. Given
sample {(x y;)}_,, the empirical loss for parameter w is defined as

Lw) = 3, 60, P(w, ).



Adaptive Optimizers (discrete form)

The discrete form of the optimizers:

w(t+ 1) —w(t) = —h(t) © L(w(t))
For AdaGrad, h(t)~! = \/m +3t_, aL(w@)’.

For RMSProp, h(6) ™" = |1, + Bt_o(1 - ble-0-DED3L(w(®))’.

(1-b)(t—1)
For Adam (w/m), h(¢t)™! = \/51 4 Zemo (1=b)e OO aL(W(T))

Microsoft

1-bt
For any optimizer, ho, = glmm




Adaptive Optimizers (continuous form)

The continuous form of the optimizers:

d _
2 = —h(0 © drew(®)

For AdaGrad, h(t)™1 = \/51 +f aL(w(r)) dr.

For RMSProp, h(t)™1 = Jsl + [, (1 — b)e~(-p)(t- D9L(w(r)) d.

f(l b)e—(1-Db)(t- T)GL(W(T)) dr
1-bt

For Adam (w/m), h(t)™! =\/ 1, +-°
For any optimizer, ho, = limh(t).

t— o0
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Assumptions

We need several mild assumptions:

For continuous case:
The neural network is locally Lipschitz with respect to parameter
The neural network is homogenous
There exists a time when NN achieves correct classification

For discrete case, two additional assumption are needed:
The neural network is M smooth with respect to the parameter
The learning rate is upper bounded and lower bounded.

Microsoft



B® Microsoft

Main Theorem
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Discussions

Our results shows RMSProp, Adam (w/m) and GD share similar

generalization property in terms of margin, while AdaGrad has worse
performance and sensitive to initialization

The exponential weighted design in the conditioner and € accelerate

the training process before convergence, and still lead to the max-
margin solution.
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Extensions

A simple modification of the proof can lead to the results of multi-
class classification, where only the constraints y;®(w, x;) = 1 are

changed into (CI)(W, xi))y_ — (CID(W, xl-))j > 1.

While there is not necessarily only one limit point, the definability
condition (used in (Ji & Telgarsky, 2020)) can ensure this.
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Proof Sketch
[ } <ﬁ dz(t) = —B(t) ® 0L(v(t)) with

Imp(t) =1

dlog(B (1)) .
dt

is Lebesgue Integrable
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Proof Sketch

L))
1
lsrzove

— Define surrogate margin as y(t) = ”

@ Prove surrogate margin is lower bounded;

Use surrogate margin to bound derivatives and prove loss
converges to zero;

Prove for every limit point of parameter direction 7%, there
exists a sequence v(t;) converges to Uv*, with v(t;) satisfies
(g;, 6;) approximately KKT condition, limeg; = 0, and lim§; =

11— 00 L—>00
0;

— By Mangasarian-Fromovitz constraint qualification, v™ is then a
KKT point.
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Proof Sketch

Adaptive Gradient Flow
(AGF)

Convergent direction of

AGF
exists and is non-zero, while for

> For AdaGrad, h, = lim

t—oo /1+m(t)
RMSProp and Adam (w/m), hy = -

_ . —1/2
7 1,. Therefore, v(t) = h,, / O w(t)
is well defined.

Adaptive optimizer obeys
AGF (after normalization) »~ v(t) obeys adaptive gradient flow by a key observation that

— [ZaL(w®)” dt < w.
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Observation of Margin

We run the experiment on MNIST dataset with a four-layer CNN.
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» Margin and test accuracy of RMSProp and Adam (w/m) are
significantly larger than those of AdaGrad.
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Directions of h,

We run the experiment of a linear separable dataset with dimension 2 and parameter dimension 3.
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The directions of h,, of RMSProp and Adam(w/m) are isotropic,
while that of AdaGrad is not and varies with initialization.
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Effect of ¢

We run the experiment on MNIST dataset with a four-layer CNN.
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Larger € leads to larger test accuracy and larger margin.
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Thank youl!

For any question, please feel free to drop a mail at
v-bohanwang@microsoft.com.



