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Introduction

* Deep Neural Networks achieve the remarkable
performance

* As a consequence, the rising concern about data
privacy and security is followed by
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Introduction

* DNNSs usually require large datasets to train, many
practitioners scrape data from external sources

* However, the external data owner may not be wiling to let
this happen

* Many online healthcare or music streaming services own privacy-sensitive
and/or copyright-protected data

Al doctor Al composer

NORMAL
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Google accused of inappropriate access to medical
data in potential class-action lawsuit

Tech giants want medical data and privacy advocates are worried

By James Vincent | Jun 27, 2019, 7:19am EDT
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Is It possible to prevent a DNN model
from learning on given data?
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Generalization Attacks

e (Given a dataset, an attacker perturbs a certain amount of
data with the aim of spoiling the DNN training process
such that a trained network lacks generalizability

* Meanwhile, the perturbations should be slight enough so legitimate users
can still consume the data normally

—
Ny 2.8

Poisoned
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Generalization Attacks

* |t can be formulated as a bilevel optimization problem

arg max L(f(X™;6%),Y™)
P.O)eT

subject to 6* € arg min L(f(X" + P;0),Y" + Q)
0

e D=(X"e€ R™, Y"ec R™O: training set of n examples

V= (X", Y™): validation set of m examples
e f(-;0): model parameterized by 6
e P and Q: perturbations to be added to D

e I :threat model controls the allowable values of perturbations
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Challenge: Bilevel Optimization

* The main challenge to solve the bilevel problem by
gradient ascent is to compute the gradients of

OL(f(X™;60%),Y™) Ang OL(f(X™; 0%),Y™)
oP 00

e through multiple training steps

o If fis trained using gradient descent, the above gradients require the
computation of high-order derivatives of * and can be easily intractable

* High-order differential
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Challenge: Bilevel Optimization

* The bilevel problem can be solved exactly and efficiently

only when the learning model is convex, e.g. SVMSs,
LASSO, Logistic/Ridge regression

e Replace the inner min problem with its stationary (or KKT) conditions

e However, the above trick is not applicable to non-convex
DNNSs
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Challenge: Bilevel Optimization

* Moreover, the attacks against convex models are shown
not transferable to non-convex DNNs

e Some works solve the relaxations of the bilevel problem
with a white-box assumption

* , where the architecture and exact weights of the model after training can
be known in advance

* This assumption, however, does not hold in many practical situations

o Efficient computing of a black-box, clean-label
generalization attack against DNNs remains an open
problem
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Neural Tangent Generalization Attacks

* \We propose Neural Tangent Generalization Attacks
(NTGAS), the first work enabling clean-label, black-box
generalization attacks against DNNs

STOP

Bad Learning

via Neural Tangent Generalization Attacks (ICML21)

https://www.github.com/lionelmessi6410/ntga



Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model f

We let f be the mean of a Gaussian Process (GP) with a

Neural Tangent Kernel (NTK) that approximates the
training dynamics of a class of wide DNNs

2. Let f be a “representative” surrogate of the unknown
target models
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Gaussian Process

 The distribution of a class of wide neural networks can
be approximated by a Gaussian Process (GP)

* Either before training or during training under gradient descent

e GP is aregressor with the mean and variance

* It only loosely depends on the exact weights of a particular network

- = Prediction

w—True function

® Observeddata

output, fix)
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Neural Tangent Kernels

* In particular, the behavior of the GP during training is
governed by a Neural Tangent Kernel (NTK)

* As the width of the networks grows into infinity, the NTK converges to a
deterministic kernel k( - , - ) that remains constant during training

e k(x', X)) represents a similarity score between x' and X’ from the network
class’ point of view

C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks ICML’21 18 /53



Neural Tangent Kernels

e At time step 7 during the gradient descent training, the
mean prediction of the GP over V evolves as:

]T"(Xm;Km,n, Kn,n’ Yn, I) — Km,n(Kn,n)—l(I . enK”’”t)Yn

. f the mean prediction of GP

o K" e R™": kernel matrix where Kl”]” =k(x' € D, ¥ € D)

o K"™" e R™": kernel matrix where K;”’;” = k(x' € V,x € D)

_k(xl,xl) k(xl,x”)_
KM — : .. :

_k(x”, xD) e k(X X
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Neural Tangent Kernels

e The mean (GP-FNN) of a GP with NTK closely
approximates the behavior of a trained fully-connected

network (FNN)
Accuracy (Clean) Accuracy (NTGA)

1.00] . 1.00 (_..
0.75 0.75
0.50 0.50

—— Train (FNN)

=== Train (GP-FNN)
0.25 Test (FNN) 0.25

Test (GP-FNN)

0.00 0 2500 5000 7500 10000 0-00 0 2500 5000 7500 10000

Step Step
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Why Neural Tangent Kernels?

e We can write the predictions made by f over Vin a closed

form without knowing the exact weights of a particular
network

]F(Xm;Km,n’ Kn,n’ Yn, I) — Km,n(Kn,n)—l(I . enK”’”t)YIft
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Efficiency

e This allows us to rewrite

arg max L(f(X™;6%),Y™)
P.O)eT

subject to 6* € arg min L(f(X" + P;0),Y" + Q)
0
* as a more straightforward problem

arg max L(f(X™; K™, K™, Y", 1), Y™)

Peg

. f the mean prediction of GP

e K"" € R"™ and K™" € R™": kernel matrices built on the poisoned
training data X" + P

 Now, the gradients of the loss L w.r.t. P can be easily
computed without backpropagating through training steps

C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks ICML’21 22 /53



Neural Tangent Generalization Attacks

* We use the projected gradient ascent to solve it

Algorithm 1 Neural Tangent Generalization Attack

Input: D = (X", Y"),V = (X", Y™), f(-;k(-,-),1t),
L,r,n, T (e)

Output: P to be added to X ™

1 Initialize P € T (e
for: < 1tordo

G+ VpL(f(X™ K K Y"1, Y™

P < Project(P + n - sign(G); T (¢))

end
¢ return P
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Challenges of a Black-box Generalization Attack

JSoIve the bilevel problem efficiently against a non-
convex model f

We let f be the mean of a Gaussian Process (GP) with a

Neural Tangent Kernel (NTK) that approximates the
training dynamics of a class of wide DNNs

2. Let f be a “representative” surrogate of the unknown
target models

The GPs behind NTGA surrogates model the evolution of
an infinite ensemble of infinite-width networks
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Model Agnosticism

e NTGA is agnostic to the target models and training
procedures because f is only their surrogate

e Why NTGA can generate successful black-box attack?
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Infinite Ensemble

* As earlier works pointed out, the ensemble can increase
the attack’s transferability

e The infinite ensemble should work the best

P¥1 P&Z sz P¥4

?

Model 1 Model 2 Model 3 Model 4
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Infinite-width Networks

* By the universal approximation theorem, the infinite-
width network can cover target networks of any weight

and architectures

* A wide surrogate has a smoother loss landscape that
helps NTGA find local optima with better transferability

Surrogate Target
—— Smooth
Non-smooth @

" (<]
w|__ . N S
S

A

///
D D
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Challenges of a Black-box Generalization Attack

JSoIve the bilevel problem efficiently against a non-
convex model f

We let f be the mean of a Gaussian Process (GP) with a

Neural Tangent Kernel (NTK) that approximates the
training dynamics of a class of wide DNNs

J Let f be a “representative” surrogate of the unknown

target models

The GPs behind NTGA surrogates model the evolution of
an infinite ensemble of infinite-width networks
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Collaborative Perturbations

arg max L(f(X™; K™", K", Y", 1), Y™),

Peg

o the perturbations P; . for individual data points X;". are
solved collectively

 Each training data can be slightly modified to remain invisible to human
eyes, and together they can significantly manipulate model generalizability
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Scalability on Large Datasets

* The computation of the gradients of NTGA
backpropagates through (K™")~! and e ™", This
creates a scalability issue on a training set with a large n

e The computational complexity is O(n°>)
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Scalability on Large Datasets

e We propose Blockwise NTGA (B-NTGA) to increase
scalability at the cost of the less collaborative benefit

1. Partition D into multiple groups, where each group contains b examples

2. Solve the optimization problem for each group independently

Kb,b
K" = : IA(b,b

kb,b

e Although missing the off-diagonal information, B-NTGA
works if b is large enough to enable efficient collaboration
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Experiments

e Datasets

e MNIST
 CIFAR-10

¢ 2-class ImageNet

e Baselines

* Return Favor Attack (RFA), Machine Learning and Knowledge Extraction’19

e DeepConfuse, NeurlPS’19

e Surrogates

* NTGA: GP-FNN and GP-CNN (infinite width/channel)

* Baselines: S-FNN and S-CNN (finite width/channel)
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Gray-box Attacks

* Here, an attacker knows the architecture of a target
model but not its weights

e NTGA(-) denotes an attack with a specific hyperparametert  FNN: -59.29%
CNN: -50.73%

Dataset Clean RFA
\Attack

Deep NTGA NTGA NTGA NTGA NTGA
Confuse (1) (8) (64) (512) (4096) (c0)

Surrogate: *-FNN — Target: FNN

MNIST 96.26+0.09 74.23+1.91

- 3.95£1.00 4.08+0.73 | 2.57+0.72 [(1.20+0.11 5.80+0.26 | 88.87+0.15

CIFAR-10 49.57£0.12 37.79+0.73

- 36.05£0.07 35.01+0.16) 32.57+0.21 §25.95+0.46 20.63+0.57] 43.61+0.35

ImageNet 91.60+0.49 90.20+0.98

- 76.60+2.58 72.40+3.14] 85.40+3.01 }86.00+2.19 88.80+2.19f) 91.20+0.75

Surrogate: *-CNN — Target: CNN

MNIST 99.49+0.02 94.92+1.75

46.2145.14 | 23.89+1.34 17.63+0.92] 15.64+1.10 | 19.25+2.05 21.30+1.02} 30.93+5.94

CIFAR-10 78.12+0.11 73.80+0.62

44.84+1.19) 41.17+£0.57 40.52+1.18] 42.28+0.86 |47.64+0.78 48.19+0.78) 65.59+0.42

ImageNet 96.00+£0.63 94.40+1.02

93.00+£0.63 \79.00+2.28 79.80+3.49 \77.00+4.90/ 80.40+3.14 88.20+1.94 \89.60+1.36

C.H. Yuan and S.H. Wu
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Effect of 1

e {controls when an attack will take effect during the
training process of a target model

* \Vertical lines represent the early-stop points

Accuracy (Train)

1.0 /
0.8 —— Clean
—— NTGA(1)
0.6 —— NTGA(8)
—— NTGA(64)
0.4 | —— NTGA(512)
= —— NTGA(4096)
107 10° 108
Step
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0.4
0.3
0.2

0.1

Accuracy (Test)
—’__N\\
2" S o
- 4__
p .
// ’--_--:=i:\~~
/,’54’,—’ ""‘—I:EE::::
ik ====
//';/(‘,,z:?<: [~ ~——
/z,/ N =
" N
- RPee
102 10°
Step

NTGA(co) works best in the long term, this result will never
happen in practice because of the early stopping
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Black-box Attacks

* Here, an attacker knows nothing about a target model

* The surrogates are very different from a target model in architecture,
optimization method, loss function, etc

FNN: -85.86%

CNN: -96.14%

Target Clean RFA Deep NTGA NTGA NTGA NTGA NTGA

\Attack Confuse (1) (8) (64) (512) (4096) (00)
Surrogate: *-FNN

CNN 99.49+0.02 86.99+2.86 - 33.80+7.21 35.14+4.68 26.03+1.83 30.01+3.06 28.09+8.25 94.15+1.31
FNN-ReLU 97.87+0.10 84.62+1.30 - 2.08+0.40 2.41+044 2.18+0.45 2.10+0.59 12.7242.40 89.93+0.81
Surrogate: *-CNN

FNN 96.26+0.09 69.95+3.34 15.48+0.94) 8.46+1.37 5.62+0.40 4.63+0.51 7.47+0.64 19.29+2.02 78.08+2.30
FNN-ReLU 97.87+0.10 84.15£1.07 17.50+1.49 | 3.48+0.90 3.72+0.68 2.86+0.41 7.69+0.59 25.62+3.00 87.81+0.79

(a) MNIST

C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks
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Black-box Attacks

* Here, an attacker knows nothing about a target model

optimization method, loss function, etc

FNN:

-55.15%

CNN: -54.27%

* The surrogates are very different from a target model in architecture,

Surrogate: *-FNN

CNN 78.12+£0.11 74.71+0.44 - 48.46+£0.56 46.88+0.90 44.84+0.38 43.17+1.23 36.05+1.11 77.43+0.33
FNN-ReLU  54.55+0.29 43.19+0.92 - 40.08+0.28 38.84+0.16 36.42+0.36 29.98+0.26 25.95+1.50 46.80+0.25
ResNet18 91.92+0.39 88.76+0.41 : 39.72+0.94 37.93+1.72 36.53%0.63 39.41+1.79 39.68+1.22 89.90+0.47
DenseNet121 92.71+0.15 88.81+0.44 - 46.50£1.96 45.25+1.51 42.59+1.71 48.48+3.62 47.36£0.51 90.82+0.13
Surrogate: *-CNN

FNN 49.57+£0.12 41.31+0.38 32.59+0.77) 28.84+0.21 28.81+0.46 29.00+0.20 26.51+0.39 25.20+0.58 33.50+0.57
FNN-ReLU  54.55+0.29 46.87+0.86 35.06+£0.39] 32.77+0.44 32.11+0.43 33.05+£0.30 31.06+0.54 30.06+0.87 38.47+0.72
ResNet18 91.9240.39 89.54+0.48 41.10+1.15§ 34.74+0.50 33.29+1.71 34.9240.53 44.75£1.19 52.51£1.70 81.45+£2.06
DenseNet121 92.71+0.15 90.50+0.19 54.99+7.33\ 43.54+2.36 37.79+1.18 40.02+1.02 50.1742.27 59.57£1.65 83.16+0.56

C.H. Yuan and S.H. Wu
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Black-box Attacks

* Here, an attacker knows nothing about a target model

optimization method, loss function, etc

FNN:

-27.68%

CNN: -19.68%

* The surrogates are very different from a target model in architecture,

Surrogate: *-FNN

CNN 96.00+0.63 95.80+0.40 77.80+£2.99 62.40+2.65 63.60+£3.56 62.60+9.99 90.00+0.89 93.80+0.40
FNN-ReLU  92.20+0.40 89.60+1.02 80.00+2.28 78.53+2.90 68.00+7.72 86.80+3.19 90.40+0.80 91.20+0.75
ResNet18 99.80+0.40 98.20+0.75 76.40+£1.85 87.80+0.98 91.00+1.90 94.80+1.83 98.40+0.49 98.80+0.98
DenseNet121 98.40+0.49 96.20+0.98 72.80+4.07 81.60+1.85 80.00+4.10 88.80+1.72 98.80+0.40 98.20+1.17

Surrogate: *-CNN

FNN 91.60+0.49 87.80+1.33 90.80+0.40§ 75.80+2.14 77.20+£3.71 86.20+2.64 88.60+0.49 89.60+0.49 89.40+0.49
FNN-ReLU 92.20+0.40 87.60+0.49 91.00+0.08 | 80.00+1.10 82.40+3.38 87.80+1.72 89.60+0.49 91.00+0.63 90.40+0.49
ResNet18 99.80+0.40 96.00+£1.79 92.80+1.72 76.40+3.44 89.20+1.17 82.80+2.04 96.40+1.02 97.80+1.17 97.80+0.40

DenseNetl121 98.40+0.49

90.40+£1.96 92.80+2.32

80.60+2.65

81.00+2.68

74.00+6.60

81.80+3.31

93.40+1.20

95.20+0.98

C.H. Yuan and S.H. Wu
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Interesting Finding

* GP-FNN surrogate seems to give comparable
performance to GP-CNN against the convolutional target
networks

e We believe this is because convolutional networks without
global average pooling behave similarly to fully connected
ones in the infinite-width limit
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Visualization

e The hyperparameter 1 also controls how an attack looks

(a) Clean

High frequencyjg
(b) RFA ‘

Mid frequency |
(c) DeepConfuse

Controlled by 7 |g
(d) NTGA(1) |

(e) NTGA(512)

(f) NTGA(00) —
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Visualization

e Smaller 1 leads to simpler perturbations

* [tis consistent with the previous findings that a network tends to learn low-
frequency patterns at the early stage of training

(a) Clean %
1
|

(d) NTGA(1) =,
-
)
>
O

(e) NTGA(512) ©
L

|
V

() NTGA(00) %_D

I
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Visualization

(a) Clean
5
(d) NTGA(1) |
(e) NTGA(512) qu
%’
(f) NTGA(00)
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Visualization

e The hyperparameter 1 also controls how an attack looks

Controlled by | 7
(d) NTGA(1)

(e) NTGA(512)

() NTGA(00)
C.H. Yuan and S.H. Wu



Visualization

* |t may be hard to evade via data preprocessing

(c) DeepConfuse (d) NTGA(1)
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Transferability

1. Infinite ensemble

* As earlier works pointed out, the ensemble can increase the transferability

2. Infinite-width networks

* By the universal approximation theorem, the GPs can cover target
networks of any weight and architectures

* A wide surrogate has a smoother loss landscape that helps NTGA find
local optima with better transferability

Surrogate Target

— Smooth
Non-smooth

Loss

A A

D D
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Eigenvalues of Hessians of networks

* As the width/channel increases, the eigenvalues become
more evenly distributed, implying a smoother loss
landscape

e GP-FNN and GP-CNN, which model infinitely wide
networks, could lead to the “best” transferability

led Eigenvalue le3 Eigenvalue

— d =32

d =64
— d =128
—— d = 256
— d =512
—— d =1024

100 101 102
(a) FNN (b) CNN
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Effect of Poisoning Rate

* The test performance does not drop significantly because
the target network can learn from other clean data

* NTGA consistently outperforms the baselines

0.50
0.45
0.40
0.35

0.30

Accuracy (Test)

— NTGA
RFA
—— DeepConfuse

0.00 0.25 0.50 0.75 1.00

C.H. Yuan and S.H. Wu

Poisoning Rate

(a) FNN

Accuracy (Test)

0.9
0.7
—— NTGA
0.5 RFA
—— DeepConfuse

0.00 0.25 0.50 0.75 1.00
Poisoning Rate

(b) DenseNetl121
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Trade-off between Speed and Collaboration

e A larger block size b always leads to better performance

* This suggest that the collaboration is a key to the success of NTGA

e However, a larger b induces higher space and time
complexity

b FNN FNN’ CNN R18 D121 time

Surrogate: GP-FNN
1 4920 5395 77775 89.78 91.14 58s
100 37.02 4228 69.02 8034 83.81 16.8s
IK 2284 2785 4733 4961 5840 35m
4K 2063 2595 36.05 39.68 47.36 34m NTGA ~5 hours

RFA ~10 mins
DeepConfuse ~5-7 days
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Summary

e NTGA declines the generalizability sharply

e |tis 107.7% more effective than the baselines, while
taking 96.5% less time to generate the poisoned data

2-class

MNIST = CIFAR-10
ImageNet

+57.4% +45.6% +220.0%
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Conclusion

 We propose NTGAs, the first work enabling clean-label,
black-box generalization attacks against DNNs

e NTGAs can stop unauthorized learning

e Towards law-compliance Al and ethical Al

* Questions? Chat with us at session time! MmN

If there are none, click skip.

e Or email to: chyuan@datalab.cs.nthu.edu.tw
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O Code & Unlearnable Dataset

C.H.

e Qur code and unlearnable datasets are available at:

https://github.com/lionelmessi6410/ntga

B lionelmessi6410 / ntga

¢ Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Install Guide | Quickstart | Results | Unlearnable Datasets | Competitions

last commit yesterday J license 'Apache-2.0

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of
ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify
training data in order to spoil the training process such that a trained network lacks generalizability. We devise
Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization
attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 25%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10
and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also

release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and /33


https://github.com/lionelmessi6410/ntga

kaggle Competitions

* We launch 3 competitions on Kaggle, where we are

interested in learning from unlearnable MNIST, CIFAR-10,
and 2-class ImageNet
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https://www.kaggle.com/c/unlearnable-mnist/overview
https://www.kaggle.com/c/unlearnable-cifar-10
https://www.kaggle.com/c/unlearnable-imagenet

