

Neural Tangent Generalization Attacks

Chia-Hung Yuan

Shan-Hung Wu

Department of Computer Science, National Tsing Hua University, Taiwan

International Conference on Machine Learning, 2021

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Introduction

- Deep Neural Networks achieve the remarkable performance
- As a consequence, the rising concern about data privacy and security is followed by

Introduction

- DNNs usually require large datasets to train, many practitioners scrape data from external sources
- However, the external data owner may not be wiling to let this happen
 - Many online healthcare or music streaming services own privacy-sensitive and/or copyright-protected data

NORMAL COVID

Al doctor

Google accused of inappropriate access to medical data in potential class-action lawsuit

Tech giants want medical data and privacy advocates are worried

By James Vincent | Jun 27, 2019, 7:19am EDT

Facial biometrics training dataset leads to BIPA lawsuits against Amazon, Alphabet and **Microsoft**

Personal Finance

Watchlist

Lifestyle

FACEBOOK · Published July 24

Real Estate

Clearview AI a

Jul 15, 2020 | Chris B

CATEGORIES

Biometr

Facebook used automatic photo recognition technology starting in 2015

Is it possible to prevent a DNN model from learning on given data?

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Generalization Attacks

- Given a dataset, an attacker perturbs a certain amount of data with the aim of spoiling the DNN training process such that a trained network lacks generalizability
 - Meanwhile, the perturbations should be slight enough so legitimate users can still consume the data normally

Clean

Generalization Attacks

It can be formulated as a bilevel optimization problem

$$\arg\max_{(\textbf{\textit{P}},\textbf{\textit{Q}})\in\mathcal{T}}L(f(\textbf{\textit{X}}^m;\theta^*),\textbf{\textit{Y}}^m)$$
 subject to $\theta^*\in\arg\min_{\theta}L(f(\textbf{\textit{X}}^n+\textbf{\textit{P}};\theta),\textbf{\textit{Y}}^n+\textbf{\textit{Q}})$

- $\mathbb{D} = (X^n \in \mathbb{R}^{n \times d}, Y^n \in \mathbb{R}^{n \times c})$: training set of n examples
- $\mathbb{V} = (X^m, Y^m)$: validation set of m examples
- $f(\cdot;\theta)$: model parameterized by θ
- $extbf{ extit{P}}$ and $extbf{ extit{Q}}$: perturbations to be added to $extbf{ extit{D}}$
- \mathcal{T} : threat model controls the allowable values of perturbations

Challenge: Bilevel Optimization

 The main challenge to solve the bilevel problem by gradient ascent is to compute the gradients of

$$\frac{\partial L(f(X^m; \theta^*), Y^m)}{\partial P}$$
 and $\frac{\partial L(f(X^m; \theta^*), Y^m)}{\partial Q}$

- through multiple training steps
 - If f is trained using gradient descent, the above gradients require the computation of high-order derivatives of θ^* and can be easily intractable

Challenge: Bilevel Optimization

- The bilevel problem can be solved exactly and efficiently only when the learning model is convex, e.g. SVMs, LASSO, Logistic/Ridge regression
 - Replace the inner min problem with its stationary (or KKT) conditions
- However, the above trick is not applicable to non-convex DNNs

Challenge: Bilevel Optimization

- Moreover, the attacks against convex models are shown not transferable to non-convex DNNs
- Some works solve the relaxations of the bilevel problem with a white-box assumption
 - , where the architecture and exact weights of the model after training can be known in advance
 - This assumption, however, does not hold in many practical situations
- Efficient computing of a black-box, clean-label generalization attack against DNNs remains an open problem

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Neural Tangent Generalization Attacks

 We propose Neural Tangent Generalization Attacks (NTGAs), the first work enabling clean-label, black-box generalization attacks against DNNs

Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-convex model \boldsymbol{f}

We let f be the mean of a Gaussian Process (GP) with a Neural Tangent Kernel (NTK) that approximates the training dynamics of a class of wide DNNs

2. Let *f* be a "representative" surrogate of the unknown target models

Gaussian Process

- The distribution of a class of wide neural networks can be approximated by a Gaussian Process (GP)
 - Either before training or during training under gradient descent
 - GP is a regressor with the mean and variance
 - It only loosely depends on the exact weights of a particular network

C.H. Yuan and S.H. Wu ICML'21 17 / 53

Neural Tangent Kernels

- In particular, the behavior of the GP during training is governed by a Neural Tangent Kernel (NTK)
 - As the width of the networks grows into infinity, the NTK converges to a deterministic kernel $k(\cdot, \cdot)$ that remains constant during training
 - $k(x^i, x^j)$ represents a similarity score between x^i and x^j from the network class' point of view

Neural Tangent Kernels

• At time step t during the gradient descent training, the mean prediction of the GP over \mathbb{V} evolves as:

$$\bar{f}(X^m; K^{m,n}, K^{n,n}, Y^n, t) = K^{m,n}(K^{n,n})^{-1}(I - e^{\eta K^{n,n}t})Y^n$$

- \bar{f} : the mean prediction of GP
- $\pmb{K}^{n,n} \in \mathbb{R}^{n,n}$: kernel matrix where $K^{n,n}_{i,j} = k(x^i \in \mathbb{D}, x^j \in \mathbb{D})$
- $K^{m,n} \in \mathbb{R}^{m,n}$: kernel matrix where $K^{m,n}_{i,j} = k(x^i \in \mathbb{V}, x^j \in \mathbb{D})$

$$\mathbf{K}^{n,n} = \begin{bmatrix} k(x^1, x^1) & \cdots & k(x^1, x^n) \\ \vdots & \ddots & \vdots \\ k(x^n, x^1) & \cdots & k(x^n, x^n) \end{bmatrix}$$

Neural Tangent Kernels

 The mean (GP-FNN) of a GP with NTK closely approximates the behavior of a trained fully-connected network (FNN)

Why Neural Tangent Kernels?

• We can write the predictions made by \bar{f} over $\mathbb V$ in a closed form without knowing the exact weights of a particular network

$$\bar{f}(X^m; K^{m,n}, K^{n,n}, Y^n, t) = K^{m,n}(K^{n,n})^{-1}(I - e^{\eta K^{n,n}t})Y^n$$

Efficiency

This allows us to rewrite

$$\arg\max_{(\textbf{\textit{P}},\textbf{\textit{Q}})\in\mathcal{T}}L(f(\textbf{\textit{X}}^m;\theta^*),\textbf{\textit{Y}}^m)$$
 subject to $\theta^*\in\arg\min_{\theta}L(f(\textbf{\textit{X}}^n+\textbf{\textit{P}};\theta),\textbf{\textit{Y}}^n+\textbf{\textit{Q}})$

as a more straightforward problem

$$\arg\max_{\boldsymbol{P}\in\mathcal{T}}L(\bar{f}(\boldsymbol{X}^m;\hat{\boldsymbol{K}}^{m,n},\hat{\boldsymbol{K}}^{n,n},\boldsymbol{Y}^n,t),\boldsymbol{Y}^m)$$

- \bar{f} : the mean prediction of GP
- $\hat{K}^{n,n}\in\mathbb{R}^{n,n}$ and $\hat{K}^{m,n}\in\mathbb{R}^{m,n}$: kernel matrices built on the poisoned training data X^n+P
- Now, the gradients of the loss L w.r.t. \boldsymbol{P} can be easily computed without backpropagating through training steps

Neural Tangent Generalization Attacks

We use the projected gradient ascent to solve it

Algorithm 1 Neural Tangent Generalization Attack

Input:
$$\mathbb{D} = (\boldsymbol{X}^n, \boldsymbol{Y}^n), \ \mathbb{V} = (\boldsymbol{X}^m, \boldsymbol{Y}^m), \ \bar{f}(\cdot; k(\cdot, \cdot), t), \ L, r, \eta, \mathcal{T}(\epsilon)$$

Output: P to be added to X^n

ı Initialize $P \in \mathcal{T}(\epsilon)$

```
for i \leftarrow 1 to r do

\begin{vmatrix}
G \leftarrow \nabla_{\mathbf{P}} L(\bar{f}(\mathbf{X}^m; \hat{\mathbf{K}}^{m,n}, \hat{\mathbf{K}}^{n,n}, \mathbf{Y}^n, t), \mathbf{Y}^m) \\
P \leftarrow \text{Project}(\mathbf{P} + \eta \cdot \text{sign}(\mathbf{G}); \mathcal{T}(\epsilon))
\end{vmatrix}

end
```

 $_{6}$ return P

Challenges of a Black-box Generalization Attack

Solve the bilevel problem efficiently against a non-convex model f

We let f be the mean of a Gaussian Process (GP) with a Neural Tangent Kernel (NTK) that approximates the training dynamics of a class of wide DNNs

2. Let *f* be a "representative" surrogate of the unknown target models

The GPs behind NTGA surrogates model the evolution of an infinite ensemble of infinite-width networks

Model Agnosticism

- NTGA is agnostic to the target models and training procedures because \bar{f} is only their surrogate
- Why NTGA can generate successful black-box attack?

Infinite Ensemble

- As earlier works pointed out, the ensemble can increase the attack's transferability
 - The infinite ensemble should work the best

Infinite-width Networks

- By the universal approximation theorem, the infinitewidth network can cover target networks of any weight and architectures
- A wide surrogate has a smoother loss landscape that helps NTGA find local optima with better transferability

Challenges of a Black-box Generalization Attack

Solve the bilevel problem efficiently against a non-convex model f

We let f be the mean of a Gaussian Process (GP) with a Neural Tangent Kernel (NTK) that approximates the training dynamics of a class of wide DNNs

Let f be a "representative" surrogate of the unknown target models

The GPs behind NTGA surrogates model the evolution of an infinite ensemble of infinite-width networks

Collaborative Perturbations

In

$$\arg\max_{\boldsymbol{P}\in\mathcal{T}}L(\bar{f}(\boldsymbol{X}^m;\hat{\boldsymbol{K}}^{m,n},\hat{\boldsymbol{K}}^{n,n},\boldsymbol{Y}^n,t),\boldsymbol{Y}^m),$$

- ullet the perturbations $oldsymbol{P}_{i,:}$ for individual data points $oldsymbol{X}_{i,:}^n$ are solved collectively
 - Each training data can be slightly modified to remain invisible to human eyes, and together they can significantly manipulate model generalizability

Scalability on Large Datasets

- The computation of the gradients of NTGA backpropagates through $(\hat{\pmb{K}}^{n,n})^{-1}$ and $e^{-\eta \hat{\pmb{K}}^{n,n}t}$. This creates a scalability issue on a training set with a large n
 - The computational complexity is $O(n^3)$

Scalability on Large Datasets

- We propose Blockwise NTGA (B-NTGA) to increase scalability at the cost of the less collaborative benefit
 - 1. Partition $\mathbb D$ into multiple groups, where each group contains b examples
 - 2. Solve the optimization problem for each group independently

$$\hat{\mathbf{K}}^{n,n} = \begin{bmatrix} \hat{\mathbf{K}}^{b,b} & \dots & \\ \vdots & \hat{\mathbf{K}}^{b,b} & \\ \vdots & \hat{\mathbf{K}}^{b,b} & \\ \vdots & \hat{\mathbf{K}}^{b,b} & \\ \end{bmatrix}$$

• Although missing the off-diagonal information, B-NTGA works if b is large enough to enable efficient collaboration

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Experiments

Datasets

- MNIST
- CIFAR-10
- 2-class ImageNet

Baselines

- Return Favor Attack (RFA), Machine Learning and Knowledge Extraction'19
- DeepConfuse, NeurIPS'19

Surrogates

- NTGA: GP-FNN and GP-CNN (infinite width/channel)
- Baselines: S-FNN and S-CNN (finite width/channel)

Gray-box Attacks

- Here, an attacker knows the architecture of a target model but not its weights
 - NTGA(·) denotes an attack with a specific hyperparameter t
 FNN: -59.29%

CNN: -50.73%

Dataset	Clean	RFA	Deep	NTGA	NTGA	NTGA	NTGA	NTGA	NTGA
\Attack			Confuse	(1)	(8)	(64)	(512)	(4096)	(∞)
Surrogate: *-FNN → Target: FNN									
MNIST	96.26±0.09	74.23±1.91	-	3.95±1.00	4.08±0.73	2.57±0.72	1.20±0.11	5.80±0.26	88.87±0.15
CIFAR-10	49.57±0.12	37.79±0.73	-	36.05±0.07	35.01±0.16	32.57±0.21	25.95±0.46	20.63±0.57	43.61±0.35
ImageNet	91.60±0.49	90.20±0.98	-	76.60±2.58	72.40±3.14	85.40±3.01	86.00±2.19	88.80±2.19	91.20±0.75
Surrogate: *-CNN → Target: CNN									
MNIST	99.49±0.02	94.92±1.75	46.21±5.14	23.89±1.34	17.63±0.92	15.64±1.10	19.25±2.05	21.30±1.02	30.93±5.94
CIFAR-10	78.12±0.11	73.80±0.62	44.84±1.19	41.17±0.57	40.52±1.18	42.28±0.86	47.64±0.78	48.19±0.78	65.59±0.42
ImageNet	96.00±0.63	94.40±1.02	93.00±0.63	79.00±2.28	79.80±3.49	77.00±4.90	80.40±3.14	88.20±1.94	89.60±1.36

Effect of t

- t controls when an attack will take effect during the training process of a target model
 - Vertical lines represent the early-stop points

NTGA(∞) works best in the long term, this result will never happen in practice because of the early stopping

Black-box Attacks

- Here, an attacker knows nothing about a target model
 - The surrogates are very different from a target model in architecture, optimization method, loss function, etc

FNN: -85.86%

CNN: -96.14%

Target	Clean	RFA	Deep	NTGA	NTGA	NTGA	NTGA	NTGA	NTGA
\Attack			Confuse	(1)	(8)	(64)	(512)	(4096)	(∞)
Surrogate: *	-FNN								
CNN	99.49±0.02	86.99±2.86	-	33.80±7.21	35.14±4.68	26.03±1.83	30.01±3.06	28.09±8.25	94.15±1.31
FNN-ReLU	97.87±0.10	84.62±1.30	-	2.08±0.40	2.41±0.44	2.18±0.45	2.10±0.59	12.72±2.40	89.93±0.81
Surrogate: *	-CNN								
FNN	96.26±0.09	69.95±3.34	15.48±0.94	8.46±1.37	5.62±0.40	4.63±0.51	7.47±0.64	19.29±2.02	78.08±2.30
FNN-ReLU	97.87±0.10	84.15±1.07	17.50±1.49	3.48±0.90	3.72±0.68	2.86±0.41	7.69±0.59	25.62±3.00	87.81±0.79
(a) MNIST									

Black-box Attacks

- Here, an attacker knows nothing about a target model
 - The surrogates are very different from a target model in architecture, optimization method, loss function, etc

FNN: -55.15%

CNN: -54.27%

Surrogate: *-	FNN								
CNN	78.12±0.11	74.71±0.44	-	48.46±0.56	46.88±0.90	44.84±0.38	43.17±1.23	36.05±1.11	77.43±0.33
FNN-ReLU	54.55±0.29	43.19±0.92	-	40.08±0.28	38.84±0.16	36.42±0.36	29.98±0.26	25.95±1.50	46.80±0.25
ResNet18	91.92±0.39	88.76±0.41	-	39.72±0.94	37.93±1.72	36.53±0.63	39.41±1.79	39.68±1.22	89.90±0.47
DenseNet121	92.71±0.15	88.81±0.44	-	46.50±1.96	45.25±1.51	42.59±1.71	48.48±3.62	47.36±0.51	90.82±0.13
Surrogate: *-	CNN								
FNN	49.57±0.12	41.31±0.38	32.59±0.77	28.84±0.21	28.81±0.46	29.00±0.20	26.51±0.39	25.20±0.58	33.50±0.57
FNN-ReLU	54.55±0.29	46.87±0.86	35.06±0.39	32.77±0.44	32.11±0.43	33.05±0.30	31.06±0.54	30.06±0.87	38.47±0.72
ResNet18	91.92±0.39	89.54±0.48	41.10±1.15	34.74±0.50	33.29±1.71	34.92±0.53	44.75±1.19	52.51±1.70	81.45±2.06
DenseNet121	92.71±0.15	90.50±0.19	54.99±7.33	43.54±2.36	37.79±1.18	40.02±1.02	50.17±2.27	59.57±1.65	83.16±0.56
				(L) CIEA	D 10				

Black-box Attacks

- Here, an attacker knows nothing about a target model
 - The surrogates are very different from a target model in architecture, optimization method, loss function, etc

FNN: -27.68%

CNN: -19.68%

Surrogate: *-	FNN								
CNN	96.00±0.63	95.80±0.40	-	77.80±2.99	62.40±2.65	63.60±3.56	62.60±9.99	90.00±0.89	93.80±0.40
FNN-ReLU	92.20±0.40	89.60±1.02	-	80.00±2.28	78.53±2.90	68.00±7.72	86.80±3.19	90.40±0.80	91.20±0.75
ResNet18	99.80±0.40	98.20±0.75	-	76.40±1.85	87.80±0.98	91.00±1.90	94.80±1.83	98.40±0.49	98.80±0.98
DenseNet121	98.40±0.49	96.20±0.98	-	72.80±4.07	81.60±1.85	80.00±4.10	88.80±1.72	98.80±0.40	98.20±1.17
Surrogate: *-	CNN								
FNN	91.60±0.49	87.80±1.33	90.80±0.40	75.80±2.14	77.20±3.71	86.20±2.64	88.60±0.49	89.60±0.49	89.40±0.49
FNN-ReLU	92.20±0.40	87.60±0.49	91.00±0.08	80.00±1.10	82.40±3.38	87.80±1.72	89.60±0.49	91.00±0.63	90.40±0.49
ResNet18	99.80±0.40	96.00±1.79	92.80±1.72	76.40±3.44	89.20±1.17	82.80±2.04	96.40±1.02	97.80±1.17	97.80±0.40
DenseNet121	98.40±0.49	90.40±1.96	92.80±2.32	80.60±2.65	81.00±2.68	74.00±6.60	81.80±3.31	93.40±1.20	95.20±0.98
				() T	NT /				

Interesting Finding

- GP-FNN surrogate seems to give comparable performance to GP-CNN against the convolutional target networks
- We believe this is because convolutional networks without global average pooling behave similarly to fully connected ones in the infinite-width limit

• The hyperparameter *t* also controls how an attack looks

(f) NTGA(∞)

Smaller t leads to simpler perturbations

 It is consistent with the previous findings that a network tends to learn lowfrequency patterns at the early stage of training

(a) Clean

(d) NTGA(1) (e) NTGA(512)

(f) NTGA(∞)

The hyperparameter t also controls how an attack looks

C.H. Yuan and S.H. Wu

It may be hard to evade via data preprocessing

Transferability

1. Infinite ensemble

As earlier works pointed out, the ensemble can increase the transferability

Infinite-width networks

- By the universal approximation theorem, the GPs can cover target networks of any weight and architectures
- A wide surrogate has a smoother loss landscape that helps NTGA find local optima with better transferability

Eigenvalues of Hessians of networks

- As the width/channel increases, the eigenvalues become more evenly distributed, implying a smoother loss landscape
- GP-FNN and GP-CNN, which model infinitely wide networks, could lead to the "best" transferability

Effect of Poisoning Rate

- The test performance does not drop significantly because the target network can learn from other clean data
 - NTGA consistently outperforms the baselines

(b) DenseNet121

Trade-off between Speed and Collaboration

- ullet A larger block size b always leads to better performance
 - This suggest that the collaboration is a key to the success of NTGA
- However, a larger b induces higher space and time complexity

	time	D121	R18	CNN	FNN'	FNN	b
					P-FNN	ogate: GI	Surre
RFA ~10 mins	5.8 s	91.14	89.78	77.75	53.95	49.20	1
DeepConfuse ~5-7 days	16.8 s	83.81	80.34	69.02	42.28	37.02	100
Deepeernase or aays	3.5 m	58.40	49.61	47.33	27.85	22.84	1K
NTGA ~5 hours	34 m	47.36	39.68	36.05	25.95	20.63	4K

Summary

- NTGA declines the generalizability sharply
- It is 107.7% more effective than the baselines, while taking 96.5% less time to generate the poisoned data

	MNIST	CIFAR-10	2-class ImageNet
Clean	99.5%	92.7%	98.4%
RFA	87.0%	88.8%	90.4%
DeepConfuse	46.2%	55.0%	92.8%
NTGA	15.6%	37.8%	72.8%
	+57.4%	+45.6%	+220.0%

C.H. Yuan and S.H. Wu

Outline

- Introduction & Motivation
- Problem Definition
- Neural Tangent Generalization Attacks
- Experiments
- Conclusion

Conclusion

- We propose NTGAs, the first work enabling clean-label, black-box generalization attacks against DNNs
- NTGAs can stop unauthorized learning
 - Towards law-compliance Al and ethical Al
- Questions? Chat with us at session time!
 - Or email to: chyuan@datalab.cs.nthu.edu.tw

Code & Unlearnable Dataset

Our code and unlearnable datasets are available at: https://github.com/lionelmessi6410/ntga

☐ lionelmessi6410 / ntga

Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Install Guide | Quickstart | Results | Unlearnable Datasets | Competitions

last commit yesterday license Apache-2.0

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify training data in order to spoil the training process such that a trained network lacks generalizability. We devise Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 25%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10 and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and

kaggle

Competitions

 We launch 3 competitions on Kaggle, where we are interested in learning from unlearnable MNIST, CIFAR-10, and 2-class ImageNet

Overview Data

Overview

Description

Evaluation

+ Add Page

