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Introduction
• Deep Neural Networks achieve the remarkable 

performance


• As a consequence, the rising concern about data 
privacy and security is followed by
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• DNNs usually require large datasets to train, many 
practitioners scrape data from external sources


• However, the external data owner may not be wiling to let 
this happen


• Many online healthcare or music streaming services own privacy-sensitive 
and/or copyright-protected data

5

Introduction

AI doctor AI composer
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Is it possible to prevent a DNN model  
from learning on given data?  

7
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Generalization Attacks
• Given a dataset, an attacker perturbs a certain amount of 

data with the aim of spoiling the DNN training process 
such that a trained network lacks generalizability 

• Meanwhile, the perturbations should be slight enough so legitimate users 
can still consume the data normally

Poisoned Clean
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Generalization Attacks
• It can be formulated as a bilevel optimization problem


• : training set of  examples


• : validation set of  examples


• : model parameterized by 


•  and : perturbations to be added to 


• : threat model controls the allowable values of perturbations

𝔻 = (Xn ∈ ℝn×d, Yn ∈ ℝn×c) n

𝕍 = (Xm, Ym) m

f( ⋅ ; θ) θ

P Q 𝔻

𝒯

arg max
(P,Q)∈𝒯

L( f(Xm; θ*), Ym)

subject to θ* ∈ arg min
θ

L( f(Xn + P; θ), Yn + Q)
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Challenge: Bilevel Optimization
• The main challenge to solve the bilevel problem by 

gradient ascent is to compute the gradients of


• through multiple training steps


• If  is trained using gradient descent, the above gradients require the 
computation of high-order derivatives of  and can be easily intractable

f
θ*

∂L( f(Xm; θ*), Ym)
∂P

 and  ∂L( f(Xm; θ*), Ym)
∂Q

High-order differential
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Challenge: Bilevel Optimization
• The bilevel problem can be solved exactly and efficiently 

only when the learning model is convex, e.g. SVMs, 
LASSO, Logistic/Ridge regression


• Replace the inner  problem with its stationary (or KKT) conditions


• However, the above trick is not applicable to non-convex 
DNNs

min
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Challenge: Bilevel Optimization
• Moreover, the attacks against convex models are shown 

not transferable to non-convex DNNs


• Some works solve the relaxations of the bilevel problem 
with a white-box assumption


• , where the architecture and exact weights of the model after training can 
be known in advance


• This assumption, however, does not hold in many practical situations


• Efficient computing of a black-box, clean-label 
generalization attack against DNNs remains an open 
problem
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Neural Tangent Generalization Attacks
• We propose Neural Tangent Generalization Attacks 

(NTGAs), the first work enabling clean-label, black-box 
generalization attacks against DNNs
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Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model 


2. Let  be a “representative” surrogate of the unknown 
target models


f

f

We let  be the mean of a Gaussian Process (GP) with a 
Neural Tangent Kernel (NTK) that approximates the 
training dynamics of a class of wide DNNs

f
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Gaussian Process
• The distribution of a class of wide neural networks can 

be approximated by a Gaussian Process (GP)


• Either before training or during training under gradient descent


• GP is a regressor with the mean and variance 

• It only loosely depends on the exact weights of a particular network
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Neural Tangent Kernels
• In particular, the behavior of the GP during training is 

governed by a Neural Tangent Kernel (NTK)


• As the width of the networks grows into infinity, the NTK converges to a 
deterministic kernel  that remains constant during training


•  represents a similarity score between  and  from the network 
class’ point of view

k( ⋅ , ⋅ )

k(xi, xj) xi xj
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Neural Tangent Kernels

• At time step  during the gradient descent training, the 
mean prediction of the GP over  evolves as:


• : the mean prediction of GP


• : kernel matrix where 


• : kernel matrix where 

t
𝕍

f

Kn,n ∈ ℝn,n Kn,n
i,j = k(xi ∈ 𝔻, xj ∈ 𝔻)

Km,n ∈ ℝm,n Km,n
i,j = k(xi ∈ 𝕍, xj ∈ 𝔻)

f(Xm; Km,n, Kn,n, Yn, t) = Km,n(Kn,n)−1(I − eηKn,nt)Yn

Kn,n =
k(x1, x1) ⋯ k(x1, xn)

⋮ ⋱ ⋮
k(xn, x1) ⋯ k(xn, xn)
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Neural Tangent Kernels
• The mean (GP-FNN) of a GP with NTK closely 

approximates the behavior of a trained fully-connected 
network (FNN)
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Why Neural Tangent Kernels?

• We can write the predictions made by  over  in a closed 
form without knowing the exact weights of a particular 
network

f 𝕍

f(Xm; Km,n, Kn,n, Yn, t) = Km,n(Kn,n)−1(I − eηKn,nt)Yn
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Efficiency
• This allows us to rewrite


• as a more straightforward problem


• : the mean prediction of GP


•  and : kernel matrices built on the poisoned 
training data 


• Now, the gradients of the loss  w.r.t.  can be easily 
computed without backpropagating through training steps

f

K̂n,n ∈ ℝn,n K̂m,n ∈ ℝm,n

Xn + P

L P

arg max
P∈𝒯

L( f(Xm; K̂m,n, K̂n,n, Yn, t), Ym)

arg max
(P,Q)∈𝒯

L( f(Xm; θ*), Ym)

subject to θ* ∈ arg min
θ

L( f(Xn + P; θ), Yn + Q)
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Neural Tangent Generalization Attacks
• We use the projected gradient ascent to solve it
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Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model 


2. Let  be a “representative” surrogate of the unknown 
target models


f

f

We let  be the mean of a Gaussian Process (GP) with a 
Neural Tangent Kernel (NTK) that approximates the 
training dynamics of a class of wide DNNs

f

The GPs behind NTGA surrogates model the evolution of 
an infinite ensemble of infinite-width networks
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Model Agnosticism
• NTGA is agnostic to the target models and training 

procedures because  is only their surrogate


• Why NTGA can generate successful black-box attack?

f
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• As earlier works pointed out, the ensemble can increase 
the attack’s transferability


• The infinite ensemble should work the best

26

Infinite Ensemble

Model 1 Model 2 Model 3 Model 4

Pred 1 Pred 2 Pred 3 Pred 4

Attack



     / 53ICML’21C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks 27

Infinite-width Networks
• By the universal approximation theorem, the infinite-

width network can cover target networks of any weight 
and architectures


• A wide surrogate has a smoother loss landscape that 
helps NTGA find local optima with better transferability
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Challenges of a Black-box Generalization Attack

1. Solve the bilevel problem efficiently against a non-
convex model 


2. Let  be a “representative” surrogate of the unknown 
target models


f

f

We let  be the mean of a Gaussian Process (GP) with a 
Neural Tangent Kernel (NTK) that approximates the 
training dynamics of a class of wide DNNs

f

The GPs behind NTGA surrogates model the evolution of 
an infinite ensemble of infinite-width networks
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Collaborative Perturbations
• In


• the perturbations  for individual data points  are 
solved collectively


• Each training data can be slightly modified to remain invisible to human 
eyes, and together they can significantly manipulate model generalizability

Pi,: Xn
i,:

arg max
P∈𝒯

L( f(Xm; K̂m,n, K̂n,n, Yn, t), Ym),
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Scalability on Large Datasets
• The computation of the gradients of NTGA 

backpropagates through  and . This 
creates a scalability issue on a training set with a large 


• The computational complexity is 

(K̂n,n)−1 e−ηK̂n,nt

n
O(n3)
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Scalability on Large Datasets
• We propose Blockwise NTGA (B-NTGA) to increase 

scalability at the cost of the less collaborative benefit


1. Partition  into multiple groups, where each group contains  examples


2. Solve the optimization problem for each group independently


• Although missing the off-diagonal information, B-NTGA 
works if  is large enough to enable efficient collaboration

𝔻 b

b

K̂n,n =
K̂b,b ⋯ ⋯

⋮ K̂b,b

⋮ K̂b,b
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Experiments
• Datasets


• MNIST


• CIFAR-10


• 2-class ImageNet


• Baselines


• Return Favor Attack (RFA), Machine Learning and Knowledge Extraction’19


• DeepConfuse, NeurIPS’19


• Surrogates


• NTGA: GP-FNN and GP-CNN (infinite width/channel)


• Baselines: S-FNN and S-CNN (finite width/channel)
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Gray-box Attacks
• Here, an attacker knows the architecture of a target 

model but not its weights


• NTGA( ) denotes an attack with a specific hyperparameter ⋅ t FNN: -59.29%
CNN: -50.73%



     / 53ICML’21C.H. Yuan and S.H. Wu Neural Tangent Generalization Attacks 35

Effect of t
•  controls when an attack will take effect during the 

training process of a target model


• Vertical lines represent the early-stop points

t

NTGA( ) works best in the long term, this result will never 

happen in practice because of the early stopping

∞
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Black-box Attacks
• Here, an attacker knows nothing about a target model


• The surrogates are very different from a target model in architecture, 
optimization method, loss function, etc

FNN: -85.86%
CNN: -96.14%
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Black-box Attacks
• Here, an attacker knows nothing about a target model


• The surrogates are very different from a target model in architecture, 
optimization method, loss function, etc

FNN: -55.15%
CNN: -54.27%
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Black-box Attacks
• Here, an attacker knows nothing about a target model


• The surrogates are very different from a target model in architecture, 
optimization method, loss function, etc

FNN: -27.68%
CNN: -19.68%
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Interesting Finding
• GP-FNN surrogate seems to give comparable 

performance to GP-CNN against the convolutional target 
networks


• We believe this is because convolutional networks without 
global average pooling behave similarly to fully connected 
ones in the infinite-width limit
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• The hyperparameter  also controls how an attack lookst

40

Visualization

High frequency

Mid frequency

Controlled by t
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• Smaller  leads to simpler perturbations 

• It is consistent with the previous findings that a network tends to learn low-
frequency patterns at the early stage of training

t

41
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• The hyperparameter  also controls how an attack lookst
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• It may be hard to evade via data preprocessing

Visualization
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• As earlier works pointed out, the ensemble can increase the transferability


• By the universal approximation theorem, the GPs can cover target 
networks of any weight and architectures


• A wide surrogate has a smoother loss landscape that helps NTGA find 
local optima with better transferability

45

1. Infinite ensemble


2. Infinite-width networks

Transferability
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Eigenvalues of Hessians of networks
• As the width/channel increases, the eigenvalues become 

more evenly distributed, implying a smoother loss 
landscape


• GP-FNN and GP-CNN, which model infinitely wide 
networks, could lead to the “best” transferability
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Effect of Poisoning Rate
• The test performance does not drop significantly because 

the target network can learn from other clean data


• NTGA consistently outperforms the baselines
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Trade-off between Speed and Collaboration

• A larger block size  always leads to better performance


• This suggest that the collaboration is a key to the success of NTGA


• However, a larger  induces higher space and time 
complexity

b

b

RFA  ~10 mins
DeepConfuse  ~5-7 days

NTGA  ~5 hours
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Summary
• NTGA declines the generalizability sharply


• It is 107.7% more effective than the baselines, while 
taking 96.5% less time to generate the poisoned data

MNIST CIFAR-10 2-class 
ImageNet

Clean 99.5% 92.7% 98.4%

RFA 87.0% 88.8% 90.4%

DeepConfuse 46.2% 55.0% 92.8%

NTGA 15.6% 37.8% 72.8%

+57.4% +45.6% +220.0%
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Conclusion
• We propose NTGAs, the first work enabling clean-label, 

black-box generalization attacks against DNNs


• NTGAs can stop unauthorized learning 

• Towards law-compliance AI and ethical AI


• Questions? Chat with us at session time! 

• Or email to: chyuan@datalab.cs.nthu.edu.tw

mailto:chyuan@datalab.cs.nthu.edu.tw
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Code & Unlearnable Dataset
• Our code and unlearnable datasets are available at: 

https://github.com/lionelmessi6410/ntga


•

https://github.com/lionelmessi6410/ntga
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Competitions
• We launch 3 competitions on Kaggle, where we are 

interested in learning from unlearnable MNIST, CIFAR-10, 
and 2-class ImageNet

https://www.kaggle.com/c/unlearnable-mnist/overview
https://www.kaggle.com/c/unlearnable-cifar-10
https://www.kaggle.com/c/unlearnable-imagenet

