OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation

ICML 2021

Jongmin Lee*¹, **Wonseok Jeon***^{2,3}, Byung-Jun Lee^{1,4}, Joelle Pineau^{2,3,5}, Kee-Eung Kim¹ (*Equal contribution)

¹KAIST, ²Mila, ³McGill University, ⁴Gauss Labs Inc., ⁵Facebook AI Research

Offline Reinforcement Learning (RL)

• Goal: Compute a **policy** that performs better than the data-collecting policy **without further environment interaction**.

Existing Offline RL Algorithms (1/2)

• Off-policy actor-critic

$$\begin{split} \min_{Q} \mathbb{E}_{(s,a,s')\sim d^{D},a'\sim\pi(s')} \Big[\Big(Q(s,a) - (r(s,a) + \gamma \bar{Q}(s',a')) \Big)^{2} \Big] + \mathcal{R}_{1}(Q,\pi) \\ \max_{\pi} \mathbb{E}_{s\sim d^{D},a\sim\pi(s)} \left[Q(s,a) \right] - \mathcal{R}_{2}(Q,\pi) \end{split}$$

• Overestimation of Q due to bootstrapping with out-of-distribution (OOD) action a'.

Existing Offline RL Algorithms (2/2)

Off-policy actor-critic + conservatism

$$\min_{Q} \mathbb{E}_{(s,a,s')\sim d^{D},a'\sim\pi(s')} \left[\left(Q(s,a) - (r(s,a) + \gamma \bar{Q}(s',a')) \right)^{2} \right] + \mathcal{R}_{1}(Q,\pi)$$
$$\max_{\pi} \mathbb{E}_{s\sim d^{D},a\sim\pi(s)} \left[Q(s,a) \right] - \mathcal{R}_{2}(Q,\pi)$$

- The regularization terms are to
 - underestimate Q
 - prevent deviating too much from data-collecting policy.

Existing Offline RL Algorithms (2/2)

• Conservative Q-Learning (CQL) [Kumar et al. 2020]

$$\begin{split} \min_{Q} \max_{\mu} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \mathbb{E}_{a'\sim\pi(\cdot|s')} [(r(s,a) + \gamma \bar{Q}(s',a') - Q(s,a))^2] \\ + \alpha (\mathbb{E}_{s\sim\mathcal{D},a\sim\mu(\cdot|s)}Q(s,a) - \mathbb{E}_{(s,a)\sim\mathcal{D}}Q(s,a)) \end{split}$$

decreases overestimated Q value

increases Q value for in-distribution actions

Our Contribution

- Existing offline RL algorithms
 - Without proper hyperparameters, overestimation still can occur due to **bootstrapping with OOD action values.**
- OptiDICE (Offline Policy <u>Opti</u>mization via Stationary <u>DI</u>stribution <u>Correction Estimation</u>)
 - Directly optimize stationary distribution correction $w(s, a) \coloneqq \frac{d^n(s, a)}{d^D(s, a)}$.
 - No alternation between policy evaluation and policy improvement.
 - Free from error due to OOD actions since a' is not used.

OptiDICE: Objective Function (1/4)

1. Policy optimization with *f*-divergence regularization:

$$\max_{\pi} \mathbb{E}_{(s,a)\sim d^{\pi}}[r(s,a)] - \alpha \mathbb{E}_{(s,a)\sim d^{D}}\left[f\left(\frac{d^{\pi}(s,a)}{d^{D}(s,a)}\right)\right]$$
$$:= D_{f}(d^{\pi}(s,a)||d^{D}(s,a)) \text{ (f is convex.)}$$

• Encourage visiting state-action pairs in data distribution.

OptiDICE: Objective Function (2/4)

2. Reformulation for optimizing over stationary distributions:

OptiDICE: Objective Function (2/4)

2. Reformulation for optimizing over stationary distributions:

OptiDICE: Objective Function (3/4)

OptiDICE: Objective Function (4/4)

4. Reformulation and change-of-variables:

$$\min_{\nu} \max_{d \ge 0} \mathbb{E}_{(s,a) \sim d^{D}} \left[\frac{d(s,a)}{d^{D}(s,a)} \left(r(s,a) + \gamma \mathbb{E}_{s' \sim T(s,a)} [\nu(s')] - \nu(s) \right) - \alpha f\left(\frac{d(s,a)}{d^{D}(s,a)} \right) \right]$$

$$+ (1 - \gamma) \mathbb{E}_{s \sim p_{0}} [\nu(s)]$$

$$= \left[\min_{\nu} \max_{w \ge 0} \mathbb{E}_{(s,a) \sim d^{D}} \left[w(s,a) \left(r(s,a) + \gamma \mathbb{E}_{s' \sim T(s,a)} [\nu(s')] - \nu(s) \right) - \alpha f\left(w(s,a) \right) \right] \right]$$

$$+ (1 - \gamma) \mathbb{E}_{s \sim p_{0}} [\nu(s)]$$

$$= \left[1 - \gamma \mathbb{E}_{s \sim p_{0}} [\nu(s)] \right]$$

- Seek **optimal** stationary distribution correction $w^*(s, a) = \frac{d^{\pi^*}(s, a)}{d^D(s, a)}$.
- No OOD actions a', i.e., free from the overestimation.

Toy Example

• OptiDICE

$$\begin{split} \min_{\nu} & \mathbb{E}_{(s,a)\sim d^{D}}\left[w^{*}(s,a;\nu)\left(R(s,a)+\gamma\mathbb{E}_{s'\sim T(s,a)}[\nu(s')]-\nu(s)\right)-\alpha f\left(w^{*}(s,a;\nu)\right)\right] \\ & +(1-\gamma)\mathbb{E}_{s\sim p_{0}}[\nu(s)] \end{split}$$

Experiment: Random MDPs

- Performance measure
 - Mean performance
 - Conditional Value at Risk (CVaR)
 - Worst case analysis
- OptiDICE
 - performs on par with baselines on its mean.
 - performs the best in CVaR.

Experiment: D4RL Dataset

- OptiDICE performs the best in Maze2D.
- OptiDICE performs on par with CQL in MuJoCo.

Thanks for Listening!

Jongmin Lee*

Wonseok Jeon*

Byung-Jun Lee

Joelle Pineau

Kee-Eung Kim