
OptiDICE: Offline Policy Optimization via
Stationary Distribution Correction Estimation

Jongmin Lee*1, Wonseok Jeon*2,3, Byung-Jun Lee1,4, Joelle Pineau2,3,5, Kee-Eung Kim1

(*Equal contribution)

1KAIST, 2Mila, 3McGill University, 4Gauss Labs Inc., 5Facebook AI Research

ICML 2021



• Goal: Compute a policy that performs better than the data-collecting
policy without further environment interaction.

Offline Reinforcement Learning (RL)
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Existing Offline RL Algorithms (1/2)
• Off-policy actor-critic

• Overestimation of     due to bootstrapping with out-of-distribution (OOD) action    .
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Exploding value 
due to overestimation

Policy wrongly converges.



Existing Offline RL Algorithms (2/2)
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• Off-policy actor-critic + conservatism

• The regularization terms are to
• underestimate 
• prevent deviating too much from data-collecting policy.



Existing Offline RL Algorithms (2/2)
• Conservative Q-Learning (CQL) [Kumar et al. 2020]
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Q value of out-of-distribution 
actions are lowered.

Policy correctly converges.

decreases overestimated Q value increases Q value for in-distribution actions



Our Contribution
• Existing offline RL algorithms

• Without proper hyperparameters, overestimation still can occur due to 
bootstrapping with OOD action values.

• OptiDICE (Offline Policy Optimization via Stationary DIstribution Correction Estimation)

• Directly optimize stationary distribution correction 𝒘𝒘 𝒔𝒔,𝒂𝒂 ≔ 𝒅𝒅𝝅𝝅 𝒔𝒔,𝒂𝒂
𝒅𝒅𝑫𝑫 𝒔𝒔,𝒂𝒂

.

• No alternation between policy evaluation and policy improvement.

• Free from error due to OOD actions since a’ is not used.
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1. Policy optimization with 𝑓𝑓-divergence regularization:

• Encourage visiting state-action pairs in data distribution.
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2. Reformulation for optimizing over stationary distributions:
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2. Reformulation for optimizing over stationary distributions:
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3. Use Lagrangian of the constrained optimization problem:
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OptiDICE: Objective Function (4/4)
4. Reformulation and change-of-variables:

• Seek optimal stationary distribution correction 𝑤𝑤∗ 𝑠𝑠,𝑎𝑎 = 𝑑𝑑𝜋𝜋
∗

(𝑠𝑠,𝑎𝑎)
𝑑𝑑𝐷𝐷(𝑠𝑠,𝑎𝑎)

.

• No OOD actions , i.e., free from the overestimation.
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Toy Example
• OptiDICE
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Only care about 
in-distribution samples.

Policy correctly converges.



Experiment: Random MDPs
• Performance measure

• Mean performance
• Conditional Value at Risk (CVaR)

• Worst case analysis

• OptiDICE
• performs on par with baselines 

on its mean.
• performs the best in CVaR.

13



Experiment: D4RL Dataset 
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• OptiDICE performs the best in Maze2D.
• OptiDICE performs on par with CQL in MuJoCo.
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