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•  In this work, we focus on data poisoning attacks.
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We focus on the latter two cases:      ;    ,  w.p. x̃i = xi + δi, ỹi = yi x̃i = xi ỹi = − yi β
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Observation: data poisoning attacks ( ) can be viewed as oracle poisoning attacks ( ).


• .


• .

δi ζi

δi = x̃i − xi

ζi = g̃(wi) − ĝ(wi)
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Remark: 1.  gives no significant statistical overhead. 

2. The above upper bound is tight in an information-theoretic sense (see paper for a lower 
bound).

∑
i<n

∥ζi∥ = 𝒪( n)
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Two-layer neural networks
• A two-layer ReLU net parameterized by ,  

 is ReLU.


• Trained by online SGD using logistic loss.


• Goal: minimize .


Assumption: The data distribution is separable by a 
positive margin  in the reproducing kernel Hilbert space 
induced by the gradient of the infinite-width network at 
initialization, [(Du et al., 2018), (Ji & Telgarsky, 2019)].

(a, W)
f(x; a, W) :=

1

m

m

∑
s=1

asσ(w⊤
s x), σ(z)

L(W) := ℙ(x,y)∼𝒟(yf(x; a, W) < 0)

γ



Main Result
Regime A (clean label attacks)


Theorem: With probability at least , we show the following for the iterates of SGD:





provided that , .  hides poly-logarithmic dependence on .


Remark: 1.  is per-sample perturbation;  is overall perturbation;  is the network width.


2.  to allow a non-empty width range.


3. Theorem implies SGD can handle large per-sample perturbation, as long as overall perturbation is small.


For other regimes like small per-sample perturbation with large overall perturbation setting (Regime B), 
and label flip attack (Regime C), check our paper for details. 

1 − δ

1
n ∑
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L(Wi) ≲
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Experiments
• Main takeaway: networks that are extremely over-parameterized are more 

susceptible to attacks.

Figure: Clean test accuracy as a function of network width under clean data setting and poisoned data setting on MNIST (left) and CIFAR10 (right).
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