
A General Framework For
Detecting Anomalous Inputs to

DNN Classifiers
Jayaram Raghuram1, Varun Chandrasekaran1, Somesh Jha1,2, Suman Banerjee1

1 2

Motivation

• DNN classifiers are widely used in many critical applications
• Unreliable predictions outside the training distribution, sometimes with high

confidence
• Anomalous inputs are fairly common in practice

• Novel classes, adversarial attacks

• Important to have a defense mechanism for DNN classifiers
• E.g., detect anomalies and take corrective action

• We focus on test-time detection of anomalous inputs to a DNN classifier

2

Anomalous Inputs

Out-of-distribution

MNIST

Fashion MNIST

+ =

Adversarial attack

Panda
confidence: 57.7%

Gibbon
confidence: 99.3%

[Goodfellow et al., ICLR’15]

3

Prior Works

• Supervised Methods: require a broad sampling of known anomalous data
q Used for configuring hyper-parameters. Does not generalize well to unknown anomalies

• Specific Layers: such methods do not jointly exploit the properties exhibited by
anomalies across the DNN layers

• Large dimensionality: generative modeling-based methods are not well-suited

• Lack of a general anomaly detection framework where one can plug-in different
components (e.g., test statistics)

4

Joint statistical Testing across Layers
for Anomalies

5

• JTLA – a general framework for detecting anomalous inputs to a DNN

1. Utilizes multiple layer representations of a DNN for detection
2. Focuses on class-conditional statistics of layer representations to better isolate

anomalies
3. Unsupervised - does not need any anomalous samples for training

Contributions

1. We present a general meta-algorithm for anomaly detection with formally
defined components
• Prior works on this problem can be fit into this meta-algorithm

2. We propose novel methods for instantiating components of the meta-
algorithm

3. We formulate a defense-aware adaptive attack that focuses on detectors such
as JTLA that use the DNN layer representations

6

Meta-algorithm For JTLA

……..

Embedding 1 Embedding 2 Embedding 3 ……..TS 1 TS 2 TS 3

7

Problem Setup & Preprocessing
• Test input : 𝒙

True class : ??
DNN class prediction: "𝐶 𝒙 = 𝑐̂

• Extract layer representations of 𝒙:
𝒙("), 𝒙($), ⋯ , 𝒙(%)

• Labeled dataset of natural inputs
𝒟 = (𝒙&, 𝑐& , 𝑛 = 1,⋯ ,𝑁}

• Data subsets for each layer ℓ and true class 𝒄
𝒟' ℓ, 𝑐 = {(𝒙&

ℓ , 𝑐&, 𝑐̂&), 𝑛 = 1,⋯ ,𝑁 ∶ 𝑐& = 𝑐}

• Data subsets for each layer ℓ and predicted class 4𝒄
5𝒟' ℓ, 𝑐̂ = {(𝒙&

ℓ , 𝑐&, 𝑐̂&), 𝑛 = 1,⋯ ,𝑁 ∶ 𝑐̂& = 𝑐̂}

8

Test Statistics from the Layers
• A function of the layer representation that

captures a statistical property useful for detection

• Test statistics proposed in prior works
q Mahalanobis distance [Lee et al., NIPS’18]
q Local intrinsic dimension [Ma et al., ICLR’18]
q Gram matrix-based deviations [Sastry & Oore, ICML’20]

• Test statistics are defined to be class-conditional
• Useful for adversarial inputs that focus on specific

(true class, predicted class) pairs

• Requirement: larger test statistic => larger deviation of
the layer representation from natural inputs

9

Test Statistics from the Layers
TS conditioned on the predicted class 𝑐̂
𝑡) | ̂,
(ℓ) = 𝑇(𝒙 ℓ , 𝑐̂, 5𝒟' ℓ, 𝑐̂)

Layer 0 1 . . L

TS 𝑡) | ̂,
(") 𝑡) | ̂,

($) . . 𝑡) | ̂,
(%)

𝒕) | ̂,

TS conditioned on each candidate source class
𝑡- | ,
(ℓ) = 𝑇 𝒙 ℓ , 𝑐, 𝒟' ℓ, 𝑐 , 𝑐 = 1,⋯ ,𝑚

Layer 0 1 . . L

TS 𝑡- | ,
(") 𝑡- | ,

($) . . 𝑡- | ,
(%)

𝒕- | ,
𝑚 + 1 TS vectors from the layers:
𝒕) | ̂, , 𝒕- | $, ⋯ , 𝒕- | .

10

Test Statistic - Instantiation
• We propose a TS based on the class counts of k-nearest

neighbors (KNN) of a layer representation
• We learn a multinomial model for the joint distribution

of the class counts from natural inputs
• We apply the log-likelihood ratio TS of the well-known

multinomial test [Read & Cressie, 2012]

• TS conditioned on the predicted class:

𝑇(𝒙 ℓ , 𝑐̂, 5𝒟' ℓ, 𝑐̂) = ;
/0$

.

𝑘/
ℓ log

𝑘/
ℓ

𝑘 𝜋/ | ̂,
(ℓ)

• TS conditioned on each source class 𝑐 = 1,⋯ ,𝑚:

𝑇 𝒙 ℓ , 𝑐, 𝒟' ℓ, 𝑐 = ;
/0$

.

𝑘/
ℓ log

𝑘/
ℓ

𝑘 A𝜋/ | ,
ℓ

• KNN class counts of an input at layer ℓ: (𝑘$
ℓ , ⋯ , 𝑘.

(ℓ))

11

Distribution-Independent Normalization
• Distribution of the test statistics are unknown

and change across the layers

• Goal: transform or normalize the test statistics
into a standard distribution

Predicted class

True class

12

Distribution-Independent Normalization
• Methods used in prior works

q Z-score normalization [Roth et al., ICML'19]
q Scaling by the expected value [Sastry & Oore, ICML'20]

• We propose two types of normalizing transformations

1. Normalization of test statistics at individual layers
𝑞 ∶ ℝ → ℚ ⊂ ℝ
For each layer ℓ = 0, 1,⋯ , 𝐿:

Predicted class: q(𝑡) | ̂,
ℓ)

Source classes: q(𝑡- | $
ℓ),⋯ , 𝑞(𝑡- | .

ℓ)

2. Multivariate normalization of the test statistic vectors
𝑞 ∶ ℝ%1$ → ℚ ⊂ ℝ
Predicted class: 𝑞 𝒕) | ̂,
Source classes: 𝑞 𝒕- | $, ⋯ , 𝑞(𝒕- | .)

13

Normalization methods - Instantiation
• We propose to use p-values for normalizing the TS
• P-value calculates the tail probability corresponding to an

observed TS. How extreme is the observed value?

• p-values are always uniformly distributed on 0, 1
under the null hypothesis (natural inputs)

• p-value transformation for the predicted class:
𝑞(𝑡) | ̂,

ℓ) = ℙ(𝑇) | ̂,
(ℓ) ≥ 𝑡) | ̂,

ℓ "𝐶 = 𝑐̂

• p-value transformation for the candidate true classes:
𝑞(𝑡- | ,

ℓ) = ℙ(𝑇- | ,
(ℓ) ≥ 𝑡- | ,

ℓ 𝐶 = 𝑐 , 𝑐 = 1,⋯ ,𝑚

• p-values are estimated using the empirical CDF based
on the corresponding data subsets

14

Layerwise Aggregation
• Normalized test statistics can be interpreted as local class-

conditional anomaly scores
• An aggregation function combines the normalized test

statistics (evidence of anomalous behavior) from the layers

• Methods used by prior works
q Weighted sum with weights learned by a Logistic

classifier [Lee et al., NIPS'18], [Ma et al., ICLR'18],
[Yang et al., ICML'20]

q Maximum or average of the normalized test statistics
[Miller et al., NeCo'19], [Sastry & Oore, ICML'20]

15

Layerwise Aggregation

Layers 0 1 . . L

TS 𝑡) | ̂,
(") 𝑡) | ̂,

($) . . 𝑡) | ̂,
(%)

Normalized
TS

𝑞(𝑡) | ̂,
(")) 𝑞(𝑡) | ̂,

($)) . . 𝑞(𝑡) | ̂,
(%))

Aggregation function, 𝑟(⋅)

For the predicted class, 𝑐̂

Layers 0 1 . . L

TS 𝑡- | ,
(") 𝑡- | ,

($) . . 𝑡- | ,
(%)

Normalized
TS

𝑞(𝑡- | ,
(")) 𝑞(𝑡- | ,

($)) . . 𝑞(𝑡- | ,
(%))

Aggregation function, 𝑟(⋅)

For each candidate true class, 𝑐 = 1,⋯ ,𝑚

𝑞233(𝒕) | ̂,)

𝑞233(𝒕- | ,) 16

Layerwise Aggregation - Instantiation
• Recall that the normalized test statistics are p-values
• Smaller p-value => Larger deviation from the natural

distribution

• Consider each p-value from a layer or layer pair to
correspond to a local hypothesis test

• We apply well-known methods from multiple testing for
combining p-values

• Fisher’s method-based aggregation [Fisher, 1992]:
log 𝑞233 𝒕 = log 𝑟 𝑄 = ∑4∈6 log 𝑞

• Harmonic mean p-value-based aggregation [Wilson, 2019]:
𝑞233 𝒕 7$ = 𝑟(𝑄)7$ = ∑4∈6 𝑞7$

• We focus on Fisher’s method in the results, since it has
better performance of the two

17

Proposed Scoring - Adversarial

• For adversarial detection
𝑆 𝑞233 𝒕) | ̂, , 𝑞233 𝒕- | $, ⋯ , 𝑞233 𝒕- | . , 𝑐̂

= log[
829

! ∈ # ∖{&!}
4()) 𝒕* | !

4()) 𝒕, | &!
]

• Key insight: an adversarial input is expected to be
• Anomalous at one or more of its layer representations

w.r.t to the predicted class, 𝑐̂
• Typical at one or more of its layer representations

w.r.t the source class from which it was created, 𝑐 ≠ 𝑐̂

18

Proposed Scoring - OOD

𝑆 𝑞233 𝒕) | ̂, , 𝑞233 𝒕- | $, ⋯ , 𝑞233 𝒕- | . , 𝑐̂
= log[$

4()) 𝒕, | &!
]

• An OOD input is different from an adversarial input in that it
is not created from one of the true classes

• It is anomalous w.r.t the predicted class, 𝑐̂

• We use a simpler version of the adversarial score function

19

Experimental Setup
Dataset Input Size #Samples (train + test) Test Accuracy

(%)
DNN Architecture

MNIST 28 x 28 x 1 50,000 + 10,000 99.12 2 Conv. + 2 FC layers

Not-MNIST 28 x 28 x 1 500,000 + 18,724 N/A N/A

SVHN 32 x 32 x 3 73,257 + 26,032 89.42 2 Conv. + 3 FC layers

CIFAR-10 32 x 32 x 3 50,000 + 10,000 95.45 ResNet-34

CIFAR-100 32 x 32 x 3 50,000 + 10,000 N/A N/A

20

• Train split: training the DNN classifier
• Test split: 5-fold cross-validation stratified by class

• Train fold: training the detector
• Test fold: anomaly scoring and performance metrics
• Average metrics over the test folds are reported

Adversarial Attacks & OOD datasets

Adversarial Attack Paper Norm Attack Parameter

Projected Gradient Descent (PGD) Madry et al., ICLR’18 2 Norm-ball radius

𝜖 ∈ {
1
255

,
3
255

,⋯ ,
21
255

}

Carlini-Wagner (CW) Carlini & Wagner, S&P’17 ∞ Confidence 𝑐 ∈ {0, 6,14,22}

Fast Gradient Sign Method (FGSM) Goodfellow et al., ICLR’15 ∞ Maximum norm-ball radius
𝜖!"# = 1

Adaptive (defense-aware) Attack Proposed 2 Attack strength 𝜆

Inlier dataset Outlier dataset

MNIST Not-MNIST

CIFAR-10 SVHN

CIFAR-10 CIFAR-100

21

Detection Methods Compared
Paper Method Name Comments Supervised

Lee et al., NIPS’18 Deep Mahalanobis Yes

Ma et al., ICLR’18 LID Local intrinsic
dimensionality

Yes

Roth et al.,
ICML’19

Odds are odd No

Papernot &
McDaniel, 2018

Deep KNN No

Jiang et al.,
NIPS’18

Trust Score Pre-logit layer No

Proposed JTLA, Fisher, multi p-values from layers &
layer pairs combined
using Fisher’s method

No

Proposed JTLA, LPE, multi Multivariate p-value
normalization using
the K-LPE method

No

• Number of nearest neighbors
𝑘 is set based on the training
data size 𝑛 using
𝑘 = ceil(𝑛;/=)

• Heuristic choice based on
[Zhao et al., NIPS‘09]

22

Performance Metrics

• Precision-Recall (PR) curves
• Average precision: calculates approximate area under the PR curve

• ROC curve
• pAUC-𝜶 : partial area under ROC curve below FPR 𝛼

• Both metrics are threshold independent

• AUROC is often used, but is not a good metric [Ahmed & Courville, AAAI’20]
• Insensitive to the proportion of anomalies
• Optimistic bias and insufficient contrast in values

23

Adversarial Detection: SVHN,
CW attack

• Both variants of JTLA outperform other
methods

• Deep Mahalanobis and Odds are odd (for low
perturbation norm) have bad performance

• Comparison of p-AUC has similar trends

24

Adversarial Detection: CIFAR-10,
Adaptive attack

• JTLA, Fisher has the best performance
although the adaptive attack targets this
particular method

• Deep Mahalanobis and JTLA, LPE also have
similar good performance

25

OOD Detection: MNIST vs. Not-MNIST

• Deep Mahalanobis has the best performance
• Deep Mahalanobis is the only supervised

method.
• It uses outlier samples from the training

folds

• The two variants of JTLA outperform the
other unsupervised methods

26

Takeaways from Experiments

Adversarial detection
• The baseline methods perform well on some datasets/attacks, but fail on others
• JTLA has more consistent performance across datasets and attacks

OOD detection
• Deep Mahalanobis has the best performance

q Has the advantage of being supervised, using outlier samples for training
q In real-world settings, it is hard to collect sufficient number and variety of outlier samples

• JTLA outperforms the other unsupervised baselines

27

Code Availability

• Github repo: https://github.com/jayaram-r/adversarial-detection

• Implementation is modular. Easy to add new techniques

• Important libraries/packages used
• PyTorch (deep learning and autograd)
• Numpy, Scipy, Numba, and Scikit-Learn
• Foolbox (adversarial attacks)
• PyNNDescent (approximate nearest neighbors)

28

https://github.com/jayaram-r/adversarial-detection

Thank you!
Questions?

29

