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Introduction



Graph Structured Data




Graph Based Models

e Must take into account the data
(signal) on each node
e As well as the domain for which

the data resides (graph)

Graph-Based
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Stability

e What happens to the output of the

model if the domain changes

e Why is it important?

@)

@)

©)

Noisy/unreliable graph
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Transferability

Changes through time
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Stability of spectral graph filters



Spectral graph filters

e Amplifies or attenuates frequencies of signals on the graph

e Can be defined as a function operating on the normalised Laplacian matrix

Example of a low-pass (smoothing) filter:

y = g(L)x /
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Stability
The low-pass filter

g(L) — (In T L)_l

Satisfies the following stability property

||g(L)X g( )x”2 < ||E|| E = Lp — L
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Where Lp is the normalised Laplacian of the graph after perturbation

We will refer to ||E||Op as the error norm



Interpretable bounds on the error norm

It is not easy to reason when the error norm will be small or large

We introduce the following bound

lg(L)x — g(Lp)x]|, { Ay Ay ( Q, ) dy — A }
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Right hand side is small when

e \We perturb between high degree nodes
e The perturbation is distributed



Experiments
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Experiment overview

We consider many random graph models and real-world graphs

We perturb with a variety of strategies

o Random strategies
o Adversarial strategy

o Robust strategy based on our bound

Experimentally test looseness of our bound

Experimentally test how stable filtering is to perturbation
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Relative output change

Largest change when
perturbing using adversarial
attack strategy

Least change when using a
Robust strategy, based on

our bound
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Qualitative Analysis of non-random strategies

Can observe the role of node degree when perturbing Barabasi Albert graphs

PGD Robust

— Edge addition !
—— Edge deletion
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Qualitative Analysis of non-random strategies

Can observe the role of perturbation concentration when perturbing K-regular graphs

PGD Robust
—— Edge addition 2 .
L ]
— Edge deletion j.
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Future work

e Quantitative/statistical analysis of the role of degree and locality

e Comparison with graph neural networks
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Thank you

kenlay@robots.ox.ac.uk



