Characterizing Structural Regularities
of Labeled Data in
Overparameterized Models

Ziheng Jiang*' ? Chiyuan Zhang*® Kunal Talwar* Michael C. Mozer?

'University of Washington “OctoML 2Google *Apple
*: equal contribution

International Conference
On Machine Learning



A Binary Chairs vs Non-Chairs Problem




A Continuum of Regularities

If we use n training examples to train the model, the probability of
correct generalization for a specific instance will behave differently
depends on the structural regularities of the training data.
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The Consistency Profile and The C-score
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Formalization
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C Score
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Experiments for Empirical Estimation

Training Pipeline
—
data-augmentation, regularization,
stable initialization, SoTA activation function,

fancy Ir schedule, momentum, preconditioning,
label smoothing, loss tempering, unsupervised aux loss

Random subset of size n Repeat 2,000 Times

Test on held out examples
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Empirical Consistency Profiles on CIFAR10
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As the subset ratio grows:

» the top-ranked examples can be classified correctly easily.

- the have persistently low probability of
correct classification.
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Empirical Consistency Profiles on MNIST and CIFAR100
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We observe similar results on MNIST and CIFAR100.
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MNIST: Visualization of Examples Ranked by C-score




CIFAR10: Visualization of Examples Ranked by C-score




CIFAR-100: Visualization of Examples Ranked by C-score




ImageNet: Visualization of Examples Ranked by C-score
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The Structural Regularities of Common
Image Data Sets
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Floor and Ceiling Effects in The Empirical Consistency Profile

The distribution of the empirical consistency profile on CIFAR10
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By taking an expectation over the subset ratio, the C-score is less
susceptible to floor and ceiling effects.
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Histogram of The Integrated C-score
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The distribution is more uniformly spread than for specific subset

ratios.
The distribution reflects the structural regularities of data set.
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The Structural Regularities of ImageNet

We compute the and standard deviation of the C-
scores of all the examples for each class.

The mean C-scores
Indicates the relative
difficulty of classes.
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Efficient C-score Proxies
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Pairwise Distance Based Proxies

We study four pairwise distance based proxies:
. C*(x,y): based on relative local density of all class labels

0 : based on relative local density of same-class examples

. : based on relative local density, ignoring labels

. CLOF (x): based on the LOF (local outlier factor) algorithm
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Conclusion:
The rankings are very sensitive to the underlying distance metrics ““gd ICML
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Learning Speed Based Proxies

We study five learning speed based proxies:
accuracy: based on 0-1 correctness
- p;: based on softmax confidence on the correct class

* Pmax:

based on max softmax confidence across all classes

entropy: based on negative entropy of softmax confidences
. forgetting: based on the forgetting event

Spearman rank
correlation between
C-score and learning
speed based proxies

on CIFAR-10. °>7
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Conclusion:

Ease of learning an instance in
the training set is a good proxy
for the probability that instance
would be classified correctly
were it held out from the

training set. =3 ICML
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Application

International Conference
On Machine Learning



Application: Identify Outliers

0.9625

0.9600

0.9575

aCcuracy

0.9550

0.9525

—e— remove memorized
—eo— remove random

0.9500

102 103 104
num training example removed
Model performance on SVHN when certain
number of examples are removed from the
training set.

0.8 A
3
o — p_L
S 0.6 1§ —— accuracy
+ — forgetting
'8 | Of v~
S 0.4 -

0.2 A

0 100 200

Training Epoch

Detection rate of label-flipped
outliers on CIFAR-10.

s CML
International Conference
On Machine Learning



Application: Study the Behavior of Different Optimizers

We partition the CIFAR-10 training set into subsets by C-
score. Then we record the learning curves—model accuracy
over training epochs—for each set:
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Conclusion

We introduce the C-score for individual instances in a data set
» (C-score: measure of how well an instance will generalize if it were
held out of training
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Conclusion

We introduce the C-score for individual instances in a data set
We compute empirical C-scores for all instances in CIFAR-10,

CIFAR-100, MNIST, and ImageNet

 Precomputed c-scores and algorithm code are available at https://
pluskid.github.io/structural-regularity/
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Conclusion

We introduce the C-score for individual instances in a data set
We compute empirical C-scores for all instances in CIFAR-10,
CIFAR-100, MNIST, and ImageNet

- We use the C-scores to illustrate structural regularities in the
data sets
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Conclusion

We introduce the C-score for individual instances in a data set
We compute empirical C-scores for all instances in CIFAR-10,
CIFAR-100, MNIST, and ImageNet

We use the C-scores to illustrate structural regularities in the
data sets

We study computationally efficient proxies for the C-score
 The amount of training required to learn an instance in the training
set is a good predictor of generalization to that instance which is
held out of training.
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Conclusion

We introduce the C-score for individual instances in a data set
We compute empirical C-scores for all instances in CIFAR-10,
CIFAR-100, MNIST, and ImageNet

We use the C-scores to illustrate structural regularities in the
data sets

We study computationally efficient proxies for the C-score

We use the C-score and its proxy to
» analyze the relative performance of ADAM and SGD with learning
rate step downs
* perform outlier detection and removal
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