Elementary Superexpressive Activations

Dmitry Yarotsky

ICML 2021

Fixed-size neural network can approximate functions with **arbitrary accuracy**

Maiorov-Pinkus (1999): There exists an analytic, sigmoidal and strictly increasing activation function σ such that **any** $f \in C([0, 1]^d)$ can be approximated with **arbitrary accuracy** by a two-hidden-layer network of a **fixed size**:

$$\widehat{f}(\mathbf{x}) = \sum_{i=1}^{6d+3} a_i \sigma \Big(\sum_{j=1}^{3d} c_{ij} \sigma(\mathbf{w}^{ij} \cdot \mathbf{x} + \theta_{ij}) + \gamma_i \Big)$$

Note: activation function σ is very complex, non-elementary

- Simple examples of elementary activations with a similar "superexpressiveness" property
- Proof that most commonly used activations are not "superexpressive"

Shen, Yang & Zhang (2020): A three-layer network using the floor $\lfloor \cdot \rfloor$, the exponential 2^x and the step function $\mathbf{1}_{x\geq 0}$ as activations can approximate Lipschitz functions with an exponentially small error $O(e^{-cW})$, where W is the number of weights.

Let ${\mathcal A}$ be a family of univariate activation functions

Different neurons can be equipped with different activations from ${\cal A}$

Call \mathcal{A} superexpressive if:

for any d, there exists a fixed d-input network architecture with a fixed number of neurons using activations from A so that any f ∈ C([0,1]^d) can be approximated with any accuracy in the uniform norm || · ||_∞ by such a network

Elementary superexpressive activations

Main Theorem 1: Each of the following families of activation functions is superexpressive: σ_3

where σ_1 is any function that is real analytic and non-polynomial in some interval $(\alpha, \beta) \subset \mathbb{R}$, and

$$\sigma_3(x) = \begin{cases} -\frac{1}{x}, & x < -1, \\ \frac{1}{\pi}(x \arcsin x + \sqrt{1 - x^2}) + \frac{3}{2}x, & x \in [-1, 1], \\ 7 - \frac{3}{x} + \frac{\sin x}{\pi x^2}, & x > 1. \end{cases}$$

The function σ_3 is $C^1(\mathbb{R})$, bounded, and strictly monotone increasing.

Key proof ideas

- Have a periodic piecewise linear function in the network
- If not directly available, generate such a function by superpositions, multiplications and differentiations
- Divide the domain $[0,1]^d$ into M sub-domains and map them to M points $1, \ldots, M$, with a large M
- Use the density of an irrational winding on the *M*-dimensional torus to fit the values at the points 1, ..., *M*

(https://en.wikipedia.org/wiki/Linear_flow_on_the_torus)

Main Theorem 2. Let \mathcal{A} be a family of finitely many piecewise Pfaffian activation functions. Then \mathcal{A} is not superexpressive.

Pfaffian functions¹

A Pfaffian chain: a sequence f₁,..., f_l of real analytic functions on a common connected domain U ⊂ ℝ^d such that

$$rac{\partial f_i}{\partial x_j}(\mathbf{x}) = \mathcal{P}_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_i(\mathbf{x})), 1 \le i \le l, \ 1 \le j \le d$$

for some polynomials P_{ij}

- A **Pfaffian function** in the chain $f_1, ..., f_l$: a function on U that can be expressed as a polynomial P in the variables $(\mathbf{x}, f_1(\mathbf{x}), ..., f_l(\mathbf{x}))$
- Complexity of the Pfaffian function f: the triplet (I, α, β) consisting of the length I of the chain, the maximum degree α of the polynomials P_{ij}, and the degree β of the polynomial P

All elementary functions are Pfaffian when considered on suitable domains

¹Khovanskii, Fewnomials (1991)

Examples and properties of Pfaffian functions

The following functions are Pfaffian:

- polynomials on $U = \mathbb{R}^d$,
- 2 e^x on \mathbb{R} ,
- \bigcirc In x on \mathbb{R}_+ ,
- arcsin x on (-1, 1),
- Sin x is Pfaffian on any bounded interval (A, B), with complexity depending on B A.

But sin x is **not** Pfaffian on whole \mathbb{R} !

Theorem (Khovanskii). Let f_1, \ldots, f_d be Pfaffian *d*-variable functions with a common Pfaffian chain on a connected domain *U*. Then the number of nondegenerate solutions of the system $f_1(\mathbf{x}) = \ldots = f_d(\mathbf{x}) = 0$ is bounded by a finite number only depending on the complexities of the functions f_1, \ldots, f_d .

Call an activation σ piecewise Pfaffian if its domain can be divided into finitely many intervals on which σ is Pfaffian.

Most practical activations are piecewise Pfaffian, e.g.:

• $\sigma(x) = \tanh x$ • $\sigma(x) = (1 + e^{-x})^{-1}$ (standard sigmoid) • $\sigma(x) = \max(0, x)$ (ReLU) • $\sigma(x) = \max(ax, x)$ (leaky ReLU) • $\sigma(x) = e^{-x^2}$ (Gaussian) • $\sigma(x) = \begin{cases} 0, \\ 1, \\ 0 \end{cases}$ • $\sigma(x) = \begin{cases} 0, \\ 1, \\ 0 \end{cases}$ • $\sigma(x) = \ln(1)$ • $\sigma(x) = \begin{cases} a(x) \\ x \end{cases}$

•
$$\sigma(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases} \text{ (step function)}$$

•
$$\sigma(x) = \ln(1 + e^x) \text{ (softplus)}$$

•
$$\sigma(x) = \begin{cases} a(e^x - 1), & x < 0 \\ x, & x \ge 0 \end{cases} \text{ (ELU)}$$