Safe Reinforcement Learning Using Advantage-Based Intervention

Nolan Wagener, Byron Boots, Ching-An Cheng

Motivation

- Reinforcement learning in real world requires **safety** during both training and deployment.
- Safe RL approaches are typically unsafe during training or need external safety mechanism forever.
- We desire:
 - Safety during training
 - Safety at deployment
 - High reward at deployment

Some Notation

- Reward function r(s, a) is non-negative.
- Safety cost function $c(s, a) = \mathbf{1}\{s \in \text{unsafe set}\}.$
- Value function for reward $V^{\pi}(s)$ and cost $\overline{V}^{\pi}(s)$.
- Objective: Maximize return from s_0 while keeping cost below some threshold.

$$\max_{\pi} V^{\pi}(s_0) \quad \text{subject to} \quad \overline{V}^{\pi}(s_0) \leq \delta$$

Prior methods

Constrained RL

Solve a constrained optimization problem. To ensure safety, optimize a penalty for safety violation along with the RL policy.

- + Directly solves for problem of interest*
- + Good performance and safety at deployment*
- Not safe during training
- Optimization may be unstable

Intervention

Wrap a safety layer around RL policy so agent doesn't take unsafe actions. Then, run an RL algorithm on the induced unconstrained MDP.

- + Safe during training
- + We solve an unconstrained problem
- No guarantees on performance or safety of RL policy at deployment

Our approach (SAILR) provides the best of both paradigms.

Our approach: SAILR

(Intervention)

We assume access to a baseline policy μ that is safe starting from the initial state.

Intervention rule \mathcal{G} defined by baseline μ and advantage threshold η . Given **RL** policy π , construct shielded policy $\mathcal{G}(\pi)$ for exploration. How we sample actions from $\mathcal{G}(\pi)$:

Our approach: SAILR

(Algorithm)

 $G(\pi)$ runs in real MDP. π observes it's running in a **surrogate MDP**.

SAILR: Run unconstrained RL algorithm (e.g., PPO) in surrogate MDP.

Theoretical Guarantees

 μ : Baseline policy

 η : Threshold for intervention

 $G(\pi)$: Shielded policy for exploration

 V^{π} : value function for reward

 \bar{V}^{π} : value function for safety cost

 π^* : Optimal policy for safety-constrained problem

 $\hat{\pi}^*$: Optimized policy returned by SAILR

Safety During Training

$$\overline{V}^{\mathcal{G}(\pi)}(s_0) \le \overline{V}^{\mu}(s_0) + \frac{\eta}{1-\gamma}$$

Shielded policy is roughly as safe as baseline policy

Safety at Deployment (Without Intervention!)

$$\overline{V}^{\hat{\pi}^*}(s_0) \le \overline{V}^{\mu}(s_0) + \frac{\eta}{1 - \gamma}$$

Optimized policy is roughly as safe as baseline policy

Return at Deployment (Without Intervention!)

$$V^{\pi^*}(s_0) - V^{\hat{\pi}^*}(s_0) \le O\left(\frac{\operatorname{Prob}(\pi^* \text{ is intervened by } \mathcal{G})}{1 - \gamma}\right)$$

Suboptimality determined by how likely π^* would be intervened

Experiments **Point Robot**

 μ : Model predictive control

 μ : Deceleration policy

Episode length at

Episode return at

deployment

deployment

Far fewer safety violations during training

Similar level of safety at deployment

6000 4000 2000 **Total Environment Interactions** 1e6

Similar returns at deployment

