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Decentralized Setting

Consider an undirected network G = (V, £)
YV ={1,...,n} — set of computing nodes

a e a E CV xV —set of edges
(—(c



Decentralized Optimization

min Z fi(x) fi(x) : RY — R is stored
= on node 7 only

@ W @ Each f;(x) is:

@ @ @ L-smooth
-strongly convex
(3 o



Decentralized Communication

Is done only across edges e € £




Decentralized Communication via Gossip

Gossip matrix W € R™ "™ .

W is symmetric positive semidefinite
kerW={zecR":21=...=x,}

Communication can be represented
as multiplication of vector by W

‘Wz, € span ({x; : j is neighbor of ¢})



Time-Varying Graphs




Time-Varying Graphs




Time-Varying Graphs

Time-varying network is modeled as a sequence of graphs {Gy},-, with gossip matrices W (k)




Problem Reformulation

Original problem Lifted problem (Primal)
min E (T min F(x)
.’L‘ERd fZ( ) x:(azl,...,azn)e(Rd)V

A% T1="""=Tn

F(z) =Y filx,)
eV

Dual formulation: Z:(zl,ulfi,ljl)e(Rd)vF (2)

n —
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Projected Nesterov Gradient Descent

ko ok k
2g = 72" + (1 —7)2}

=28 +na(zh — 2F) — nPVE*(2))

zj?“ =z — PV F" (z’;)

Converges with rate: () (/{1/2 log 1/6) K — L/,LL

Can not be implemented
in decentralized fashion
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Key Idea

Decentralized communication can
be seen as the application of a
contractive compression operator

| (k)2 — 27 < (1= oAg,) =1
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AT = inf At (W(k))

min min



Error-Feeback Mechanism

Contractive compressor: H (Z) — ZH2 (1 — )||Z||2

Gradient Descent with Contractive (biased)
compression operators may not converge.

v® =m”® —y¢® // vector to compress

= 2P L C(v") // gradient step

mFtt = o® — C(v") // update error
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Comparison to Existing Work

ADOM achieves the new state-of-the-art rate for decentralized optimization over time-varying graphs.

Algorithm Communication complexity
N DiGing O (/223 210g 1) Our method combines
edic et al. (2017) € .
SANDA Y error-feedback with
Maros & Jaldén (2018) O (x*s**log 7) Nesterov acceleration
ACC-DNGD 3/2 5/7 1
Qu & Li (2019) O (x**>Mog )
APM O (i log? 1) K = L/,u
Li et al. (2018) X &
Mudag 172 1 -
Ye et al. (2020) O (x log(r)log ) Y = sup >\maX (W(k))
ADOM + (W
Our Work O (xr'/?log ¢) )\mm (W(k))
Obtained communication complexity is optimal. See preprint by Kovalev et al. 13
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Experimental Results

ADOM converges linearly and outperforms all known algorithms for every set of parameters.
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fi(z) = p” Z log (1 + exp (—bija;rjx)) + g|\x||2
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