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Minimax Deep Learning Frameworks
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Minimax Deep Learning Frameworks
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Gradient-based Min-Max Learners
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Simultaneous Optimization Methods
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Generalization Analysis in Convex-Concave Settings

* For convex-concave minimax objectives, our generalization bounds
suggest a similar performance for simultaneous and non-simultaneous

update algorithms.

Theorem: Consider an #-smooth and L-Lipschitz minimax objective that
is u-strongly convex-concave in the min and max variables. Then, the

expected minimax generalization risk of GDA and GDmax are bounded:
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Generalization Analysis in Non-Convex-Concave Settings

* For general non-convex-concave minimax objectives, our generalization
bounds indicate a different performance for simultaneous and non-

simultaneous update algorithms.

Theorem: Consider an #-smooth and L-Lipschitz objective that is p-stron
gly concave in maximization variable. Under n,, ; < c/t, the minimax

generalization risk for of GDA with stepsize ratio r and GDmax satisfy:

€gen (GDA) < (’)(T 1/ (o) ), €gen(GDmax) < (f)(T 1+1/<i2c/,1,))
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