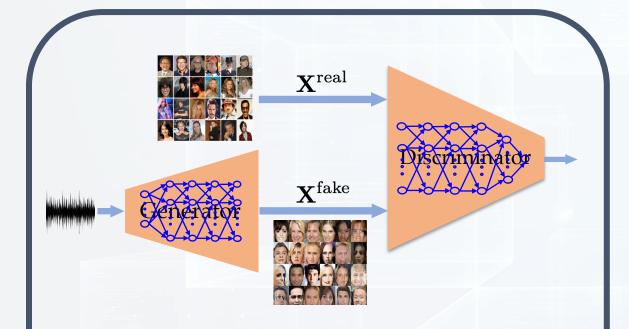
Train simultaneously, generalize better: Stability of gradient-based minimax learners

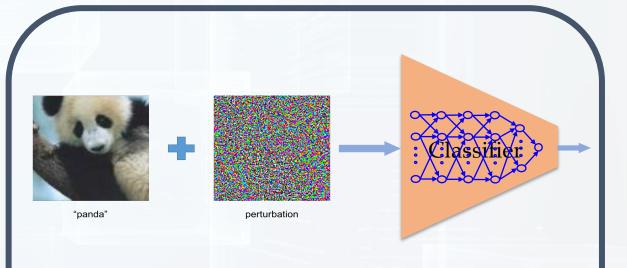
Farzan Farnia, Asu Ozdaglar

Massachusetts Institute of Technology

International Conference on Machine Learning, July 2021

Minimax Deep Learning Frameworks





Generative Adversarial Nets

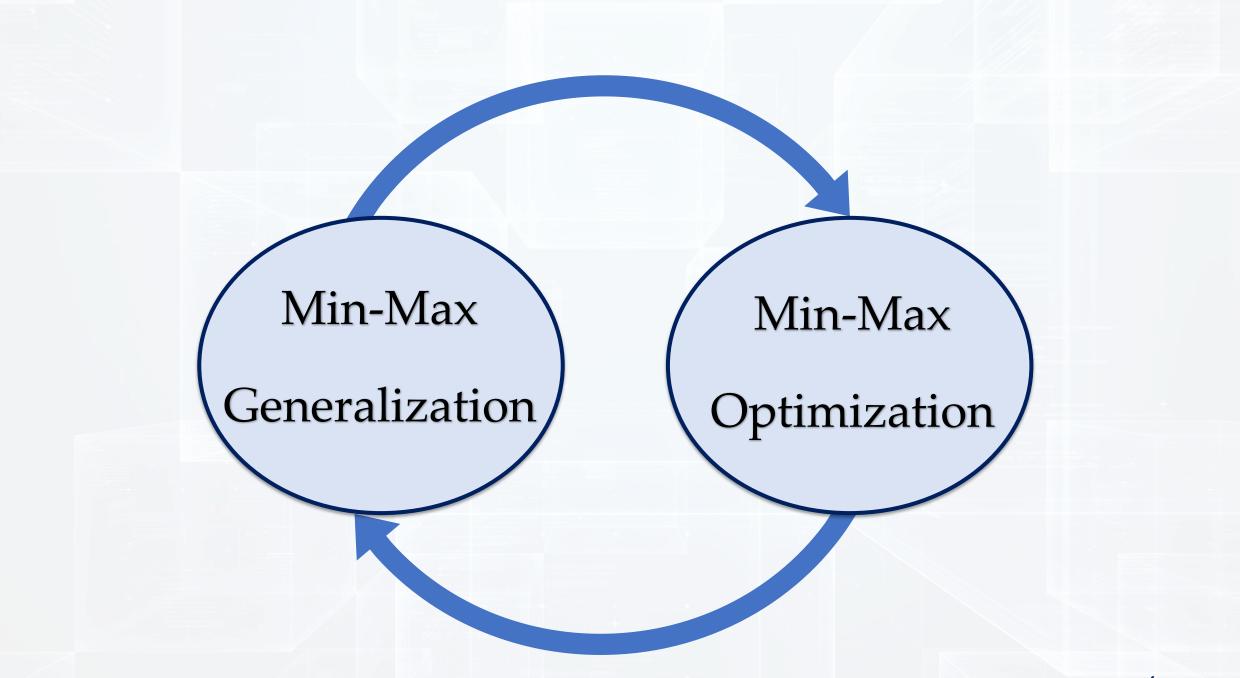
Adversarial Training

Minimax Deep Learning Frameworks

$$\min_{\mathbf{w}} \max_{\boldsymbol{\theta}} \mathbb{E}_{Z \sim P_{Z}} \left[f(\mathbf{w}, \boldsymbol{\theta}; Z) \right]$$

Generalization Error $\approx \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{w}, \boldsymbol{\theta}; z_{i})$

3



Gradient-based Min-Max Learners

GDA
$$\begin{cases} \mathbf{w}_{k+1} = \mathbf{w}_k - \eta_w \nabla_w \mathcal{L}(\mathbf{w}_k, \boldsymbol{\theta}_k) \\ \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta_\theta \nabla_\theta \mathcal{L}(\mathbf{w}_k, \boldsymbol{\theta}_k) \\ \text{Simultaneous Optimization Methods} \end{cases}$$
GDmax
$$\begin{cases} \mathbf{w}_{k+1} = \mathbf{w}_k - \eta_w \nabla_w \mathcal{L}(\mathbf{w}_k, \boldsymbol{\theta}_k) \\ \boldsymbol{\theta}_{k+1} = \operatorname{argmax}_{\tilde{\boldsymbol{\theta}}} \mathcal{L}(\mathbf{w}_k, \tilde{\boldsymbol{\theta}}) \\ \text{Non-Simultaneous Optimization Methods} \end{cases}$$

Generalization Analysis in Convex-Concave Settings

 For convex-concave minimax objectives, our generalization bounds suggest a similar performance for simultaneous and non-simultaneous update algorithms.

Theorem: Consider an
$$\ell$$
-smooth and *L*-Lipschitz minimax objective that
is μ -strongly convex-concave in the min and max variables. Then, the
expected minimax generalization risk of GDA and GDmax are bounded:
 $\epsilon_{\text{gen}}(\text{GDA}) \leq \frac{2L^2(\ell/\mu + 1)}{(\mu - \frac{\ell^2 \eta_w}{2})n}, \quad \epsilon_{\text{gen}}(\text{GDmax}) \leq \frac{2L^2(\ell/\mu + 1)}{\mu n}$

Generalization Analysis in Non-Convex-Concave Settings

• For general non-convex-concave minimax objectives, our generalization bounds indicate a different performance for simultaneous and non-simultaneous update algorithms.

Theorem: Consider an ℓ -smooth and *L*-Lipschitz objective that is μ -stron gly concave in maximization variable. Under $\eta_{w,t} \leq c/t$, the minimax generalization risk for of GDA with stepsize ratio r and GDmax satisfy: $\epsilon_{\text{gen}}(\text{GDA}) \leq \mathcal{O}(T^{\frac{1}{1+1/(\ell r c)}}), \quad \epsilon_{\text{gen}}(\text{GDmax}) \leq \mathcal{O}(T^{\frac{1}{1+1/(\ell^2 c/\mu)}})$

Summary

Generalization in Minimax

Learning Frameworks

Algorithmic Stability

Minimax Optimization

Simultaneous-update

Algorithms