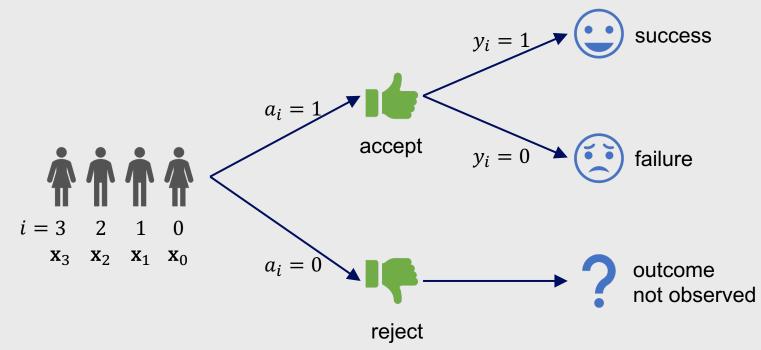
Decision-Making Under Selective Labels Optimal Finite-Domain Policies and Beyond

Dennis Wei IBM Research

Selective Labels

Learn to make decisions with no observed outcomes under one of the decisions



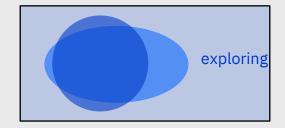
Existing Approaches

- 1. Supervised Learning
- Most common
- Threshold model predictions
- Update model based only on accepted individuals
- **Drawback:** May be suboptimal due to censoring

- 2. "Consequential Learning" [Kilbertus et al., AISTATS 2020]
- Collect labelled data using existing policy
- Learn new policy to maximize held-out utility

Drawback 1: Needs labelled data from "exploring" policy

Drawback 2: Does not account for cost of this exploration



Proposed Online Formulation

Balance costs of decisions during learning against future utility

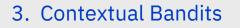
Learn decision policy $\Pi(x) = \Pr(A = 1|x)$ to maximize discounted total reward:

$$\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} a_{i}(y_{i}-c)\right], \quad \gamma < 1$$
$$a_{i}(y_{i}-c) = \begin{cases} 1-c & \text{if success} \\ -c & \text{if failure} \\ 0 & \text{if reject} \end{cases}$$

Existing Approaches

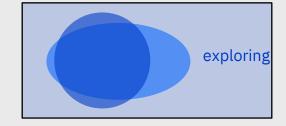
- 1. Supervised Learning
- Most common
- Threshold model predictions
- Update model based only on accepted individuals
- **Drawback:** May be suboptimal due to censoring

- 2. "Consequential Learning" [Kilbertus et al., AISTATS 2020]
- Collect labelled data using existing policy
- Learn new policy to maximize held-out utility
- **Drawback 1:** Needs labelled data from "exploring" policy
- **Drawback 2:** Does not account for cost of this exploration



- Two arms: accept/reject
- Context x

Drawback: Lower utility, due to not being tailored to selective labels problem

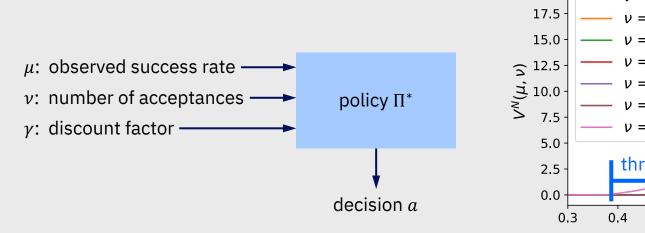


Approach: Start simple and generalize

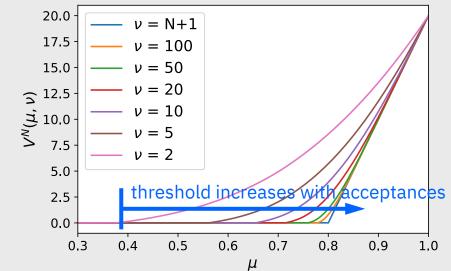
Homogeneous Case

Fix/drop X to give a *homogeneous* population

Dynamic programming yields **optimal** policy

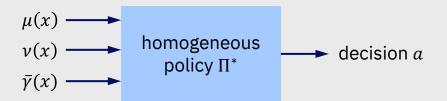


Deterministic: $\Pi^*(\mu, \nu) = \mathbf{1}(V^*(\mu, \nu) > 0)$



More General Cases

Leverage homogeneous policy



1. Finite Domain $X \in \mathcal{X}$, $|\mathcal{X}| < \infty$

Optimal policy: homogeneous policies for $x \in \mathcal{X}$

 $\mu(x), \nu(x)$: conditioned on x

 $\bar{\gamma}(x)$: *effective* discount factor

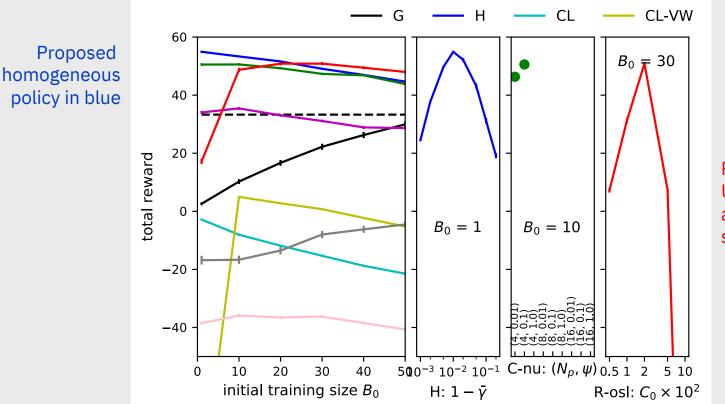
2. Infinite Domain

 $\mu(x)$: success probability model

v(x): confidence in $\mu(x)$ (using bootstrap)

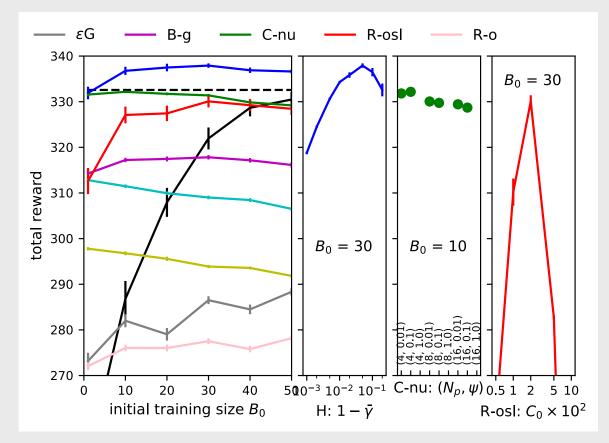
 $\bar{\gamma}(x) \equiv \bar{\gamma}$: exploration/exploitation parameter

Utility on FICO Dataset (lending)



R-osl (red) is a UCB-type policy adapted for selective labels

Utility on COMPAS Dataset (criminal justice)



Learn more at poster session: https://icml.cc/virtual/2021/poster/10109

Earlier version: https://arxiv.org/abs/2011.01381