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Selective Labels
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Learn to make decisions with no observed outcomes under one of the decisions
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1. Supervised Learning

— Most common

— Threshold model predictions

— Update model based only on 
accepted individuals

Drawback: May be suboptimal due to 
censoring

2. “Consequential Learning”
[Kilbertus et al., AISTATS 2020]

— Collect labelled data using existing 
policy 

— Learn new policy to maximize 
held-out utility

Drawback 1: Needs labelled data from 
“exploring” policy 

Drawback 2: Does not account for cost 
of this exploration

Existing Approaches

optimal

observed

exploring



Proposed Online Formulation
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Balance costs of decisions during learning against future utility

Learn decision policy Π 𝑥 = Pr 𝐴 = 1 𝑥 to maximize discounted total reward:
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𝛾!𝑎! 𝑦! − 𝑐 , 𝛾 < 1

𝑎! 𝑦! − 𝑐 = 6
1 − 𝑐 if success
−𝑐 if failure
0 if reject
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1. Supervised Learning

— Most common

— Threshold model predictions

— Update model based only on 
accepted individuals

Drawback: May be suboptimal due to 
censoring

3. Contextual Bandits

— Two arms: accept/reject

— Context 𝐱

Drawback: Lower utility, 
due to not being tailored to selective 
labels problem

Existing Approaches

optimal
exploring

observed

2. “Consequential Learning”
[Kilbertus et al., AISTATS 2020]

— Collect labelled data using existing 
policy 

— Learn new policy to maximize 
held-out utility

Drawback 1: Needs labelled data from 
“exploring” policy 

Drawback 2: Does not account for cost 
of this exploration



Approach: Start simple and generalize
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Homogeneous Case
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Fix/drop 𝑋 to give a homogeneous population

Dynamic programming yields optimal policy

𝜇:  observed success rate
𝜈:  number of acceptances
𝛾:  discount factor

Deterministic:  Π∗ 𝜇, 𝜈 = 𝟏 𝑉∗ 𝜇, 𝜈 > 0

policy Π∗

decision 𝑎

threshold increases with acceptances



More General Cases
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1. Finite Domain   𝑋 ∈ 𝒳, 𝒳 < ∞

Optimal policy:  homogeneous policies for 𝑥 ∈ 𝒳

𝜇 𝑥 , 𝜈(𝑥):  conditioned on 𝑥

𝛾̅(𝑥):  effective discount factor

2. Infinite Domain

𝜇(𝑥):  success probability model

𝜈(𝑥):  confidence in 𝜇(𝑥) (using bootstrap)

𝛾̅ 𝑥 ≡ 𝛾̅: exploration/exploitation parameter

homogeneous 
policy Π∗

𝜇 𝑥
𝜈 𝑥
𝛾̅(𝑥)

decision 𝑎

Leverage homogeneous policy



Utility on FICO Dataset (lending)
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Proposed 
homogeneous

policy in blue

R-osl (red) is a 
UCB-type policy 
adapted for 
selective labels



Utility on COMPAS Dataset (criminal justice)
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Learn more at poster session: https://icml.cc/virtual/2021/poster/10109

Earlier version:  https://arxiv.org/abs/2011.01381
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