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Selective Labels

Learn to make decisions with no observed outcomes under one of the decisions
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Existing Approaches

1. Supervised Learning 2. “Consequential Learning”
[Kilbertus et al., AISTATS 2020]

— Most common — Collect labelled data using existing
policy

— Threshold model predictions

— Learn new policy to maximize
— Update model based only on held-out utility

accepted individuals

Drawback: May be suboptimal due to Drawback 1: Needs labelled data from
censoring “exploring” policy

Drawback 2: Does not account for cost
of this exploration

exploring

optimal




Proposed Online Formulation

Balance costs of decisions during learning against future utility

Learn decision policy II(x) = Pr(4 = 1|x) to maximize discounted total reward:
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Existing Approaches

1. Supervised Learning

— Most common
— Threshold model predictions

— Update model based only on
accepted individuals

Drawback: May be suboptimal due to
censoring

optimal

2. “Consequential Learning”
[Kilbertus et al., AISTATS 2020]

— Collect labelled data using existing
policy

— Learn new policy to maximize
held-out utility

Drawback 1: Needs labelled data from

“exploring” policy

Drawback 2: Does not account for cost
of this exploration

exploring

3. Contextual Bandits

— Two arms: accept/reject

— Contextx

Drawback: Lower utility,
due to not being tailored to selective
labels problem



Approach: Start simple and generalize
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Homogeneous Case

Fix/drop X to give a homogeneous population

Dynamic programming yields optimal policy

u: observed success rate —

v: number of acceptances — policy IT*
y: discount factor >
decision a
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Deterministic: I1*(u,v) = 1(V*(u,v) > 0)
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More General Cases

Leverage homogeneous policy

v(x) — homogene?us — decision a
policy I1

1. Finite Domain X € X, |X| < 2. Infinite Domain
Optimal policy: homogeneous policies for x € X u(x): success probability model
u(x),v(x): conditioned on x v(x): confidence in u(x) (using bootstrap)

Y (x): effective discount factor Y(x) = y: exploration/exploitation parameter
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Utility on FICO Dataset (lending)
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Utility on COMPAS Dataset (criminal justice)
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Learn more at poster session: https://icml.cc/virtual/2021/poster/10109

Earlier version: https://arxiv.org/abs/2011.01381
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