
LEARNING AND PLANNING

IN AVERAGE-REWARD MDPS

Yi Wan*, Abhishek Naik*, Richard S. Sutton

{wan6, anaik1, rsutton}@ualberta.ca

ICML 2021

OUTLINE
▸ Contributions

▸ Background

▸ Problem setting

▸ Related work

▸ Algorithms and Experiments

▸ Control

▸ Prediction

▸ Centering

▸ Conclusions

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,  
including:

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

A family of average-reward learning and planning algorithms,  
including:

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free
prediction algorithm 

A family of average-reward learning and planning algorithms,  
including:

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free
prediction algorithm 

3. A general technique to estimate the actual value
function rather than the value function plus an offset

A family of average-reward learning and planning algorithms,  
including:

PROBLEMS AND OBJECTIVES
PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

• Total-reward objective

• Discounted objective

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

Continuing problems

• Total-reward objective

• Discounted objective

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

Continuing problems

• Total-reward objective

• Discounted objective

• Discounted objective

• Average-reward objective

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

Continuing problems

• Total-reward objective

• Discounted objective

• Discounted objective

• Average-reward objective

BACKGROUND
PROBLEM SETTING

BACKGROUND
▸ Finite MDPs

PROBLEM SETTING

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

PROBLEM SETTING

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

(Recurrent MDP)

≐ r(π)

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

(Recurrent MDP)

≐ r(π)

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

r*(s) ≐ sup
π

r(π, s)

(Recurrent MDP)

≐ r(π)

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

r*(s) ≐ sup
π

r(π, s)

(Recurrent MDP)

≐ r(π)

(Communicating MDP)≐ r*

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

r*(s) ≐ sup
π

r(π, s)

(Recurrent MDP)

≐ r(π)

(Communicating MDP)≐ r*

BACKGROUND
▸ Finite MDPs
▸ Tabular representation

r(π, s) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0 = s, A0:t−1 ∼ π]

vπ(s) ≐ lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

Reward rate

Differential 
value function

PROBLEM SETTING

r*(s) ≐ sup
π

r(π, s)

(Recurrent MDP)

≐ r(π)

(Communicating MDP)≐ r*

BELLMAN EQUATIONS
BACKGROUND

BELLMAN EQUATIONS

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀sEvaluation

BACKGROUND

BELLMAN EQUATIONS

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

q(s, a) = ∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + max
a′￼

q(s′￼, a′￼)] ∀s, a

Evaluation

Optimality

BACKGROUND

BELLMAN EQUATIONS

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

q(s, a) = ∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + max
a′￼

q(s′￼, a′￼)] ∀s, a

Evaluation

Optimality

BACKGROUND

If the MDP is recurrent, the solution of is unique, and  
the solution of or is unique up to an additive constant.

r̄
v q

CLASSIFICATION OF ALGORITHMS

CLASSIFICATION OF ALGORITHMS

Learning algorithms

CLASSIFICATION OF ALGORITHMS

Learning algorithmsOn-/off-policy

CLASSIFICATION OF ALGORITHMS

Learning algorithms

Planning algorithms

On-/off-policy

CLASSIFICATION OF ALGORITHMS

Learning algorithms

Planning algorithms

Combined  
learning and planning 
algorithms

On-/off-policy

}

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND

Average-reward

learning + combined

algorithms
Prediction Control

On-policy Average Cost TD (1999)

LSTD (2002)

Actor-critic (2000, 2009)

UCRL2 (2010) 
Politex (2019)

Off-policy
Wen et al. (2020)

GradientDICE (2020)

R-learning (1993)

Singh (1994)

RVI Q-learning (2001)

Gosavi (2004) 

RELATED WORK (LEARNING + COMBINED)

Differential TD-learning Differential Q-learning

Legend: Tabular, Function Approximation, Missing theoretical results, Ours

BACKGROUND
RELATED WORK (PLANNING)

Average-reward planning algorithms

BACKGROUND
RELATED WORK (PLANNING)

▸ Value iteration (Bellman 1957)

▸ Policy iteration (Howard 1960)

▸ Relative value iteration (White 1963) 

Average-reward planning algorithms

BACKGROUND
RELATED WORK (PLANNING)

▸ Value iteration (Bellman 1957)

▸ Policy iteration (Howard 1960)

▸ Relative value iteration (White 1963) 

Non-incremental

Average-reward planning algorithms

BACKGROUND
RELATED WORK (PLANNING)

▸ Value iteration (Bellman 1957)

▸ Policy iteration (Howard 1960)

▸ Relative value iteration (White 1963) 

▸ Jalali and Ferguson (1990)

▸ RVI Q-planning (Abounadi et al. 2001)

▸ Linear Programming Methods (e.g., Wang 2017)

Non-incremental

Average-reward planning algorithms

BACKGROUND
RELATED WORK (PLANNING)

▸ Value iteration (Bellman 1957)

▸ Policy iteration (Howard 1960)

▸ Relative value iteration (White 1963) 

▸ Jalali and Ferguson (1990)

▸ RVI Q-planning (Abounadi et al. 2001)

▸ Linear Programming Methods (e.g., Wang 2017)

Non-incremental

Incremental

Average-reward planning algorithms

BACKGROUND
RELATED WORK (PLANNING)

▸ Value iteration (Bellman 1957)

▸ Policy iteration (Howard 1960)

▸ Relative value iteration (White 1963) 

▸ Jalali and Ferguson (1990)

▸ RVI Q-planning (Abounadi et al. 2001)

▸ Linear Programming Methods (e.g., Wang 2017)

▸ Differential TD-planning, Differential Q-planning

Non-incremental

Incremental

Average-reward planning algorithms

ALGORITHM MOTIVATION
CONTROL

ALGORITHM MOTIVATION
CONTROL

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

Conventional error

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

Conventional error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

Conventional error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

r̄ = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − v(s) + v(s′￼)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

CONTROL

Conventional error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

r̄ = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − v(s) + v(s′￼)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

CONTROL

Conventional error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

r̄ = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − v(s) + v(s′￼)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

CONTROL

Conventional error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

ALGORITHM MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + v(s′￼)] ∀s

r̄ = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r − v(s) + v(s′￼)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

CONTROL

Conventional error

TD error

Restricted to the  
on-policy setting

new_estimate = old_estimate + stepsize*(target - old_estimate)

…, St, At, Rt+1, St+1, …

DIFFERENTIAL Q-LEARNING
CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

CONTROL ALGORITHM

 Theorem 1 (informal) 
If the Bellman optimality equation has a unique solution for and
a unique solution for up to an additive constant, under Borkar’s
(1998) asynchronous stochastic-approximation assumptions,
Differential Q-learning algorithm converges a.s.:

• to ,

• to a solution of the Bellman optimality equation, and

• to for all where is a greedy policy w.r.t. .

r*
q*

R̄t r*
Qt
r(πt, s) r* s πt Qt

PSEUDOCODE

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

CONTROL ALGORITHMS

{

PSEUDOCODE

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

CONTROL ALGORITHMS

Qt+1(St, At) = Qt(St, At) + αt(Rt+1− f(Qt)

+ max
a

Qt(St+1, a) − Qt(St, At))

RVI Q-learning
{

DOMAIN
CONTROL EXPERIMENTS

▸ Access Control Queueing Task (Sutton & Barto 2018, Ch.10)

4 18 4 2

DOMAIN
CONTROL EXPERIMENTS

▸ Access Control Queueing Task (Sutton & Barto 2018, Ch.10)

4 18 4 2

▸ 10 servers, 4 priorities

▸ p = 0.06

PARAMETERS AND SAMPLE LEARNING CURVE
▸

▸

▸ 80,000 steps

▸ 30 runs

▸

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

Reward
rate

(30 runs)

Timesteps

Differential Q-learning

CONTROL EXPERIMENTS

ϵ = 0.1

PARAMETERS AND SAMPLE LEARNING CURVE
▸

▸

▸ 80,000 steps

▸ 30 runs

▸

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

Reward
rate

(30 runs)

Timesteps

Differential Q-learning

CONTROL EXPERIMENTS

Random 
performance

ϵ = 0.1

PARAMETERS AND SAMPLE LEARNING CURVE
▸

▸

▸ 80,000 steps

▸ 30 runs

▸

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

Reward
rate

(30 runs)

Timesteps

Differential Q-learning

CONTROL EXPERIMENTS

Random 
performance

Optimal performance

ϵ = 0.1

PARAMETER STUDY AND INFERENCES
CONTROL EXPERIMENTS

PARAMETER STUDY AND INFERENCES

▸ Differential Q-learning’s performance varies only slightly  
over a wide range of parameter values.

CONTROL EXPERIMENTS

PARAMETER STUDY AND INFERENCES

▸ Differential Q-learning’s performance varies only slightly  
over a wide range of parameter values.

CONTROL EXPERIMENTS

PARAMETER STUDY AND INFERENCES

▸ Differential Q-learning’s performance varies only slightly  
over a wide range of parameter values.

▸ RVI Q-learning’s performance depends significantly  
on the choice of the reference state.

CONTROL EXPERIMENTS

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free
prediction algorithm 

3. A general technique to estimate the actual value
function rather than the value function plus an offset

A family of average-reward learning and planning algorithms,  
including:

PREDICTION
ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

Differential TD-learning

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

Differential TD-learning

 Theorem 2 (informal) 
If 1) the MDP is recurrent,

 2) the stepsizes are decreased appropriately,

 3) all the states are updated infinite number of times, 
 4) the maximum ratio of the update frequencies is finite, 
 5) covers all the actions that may choose in all states, 
  
then the Differential TD-learning algorithm converges a.s.:  

 to , to a solution of the Bellman evaluation equation.

b π

R̄t r(π) Vt

PREDICTION
ALGORITHM

{

PREDICTION
ALGORITHM

R̄t+1 ≐ R̄t + ηαt(Rt+1 − R̄t)

Average Cost TD-learning{

PREDICTION
ALGORITHM

(restricted to on-policy)

R̄t+1 ≐ R̄t + ηαt(Rt+1 − R̄t)

Average Cost TD-learning{

PREDICTION
DOMAIN EXPERIMENT

▸ Two Loop Task

▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

▸ Target policy: 0.5 left, 0.5 right

▸ Behavior policy: 0.9 left, 0.1 right

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

+1

+2

1

3

2 6

5

0

4 78

PREDICTION
DOMAIN EXPERIMENT

▸ Two Loop Task

▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

▸ Target policy: 0.5 left, 0.5 right

▸ Behavior policy: 0.9 left, 0.1 right

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (Tsitsiklis and Van Roy, 1999) 

inf
c

∥v − (vπ + ce)∥dπ

+1

+2

1

3

2 6

5

0

4 78

PREDICTION
DOMAIN EXPERIMENT

▸ Two Loop Task

▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

▸ Target policy: 0.5 left, 0.5 right

▸ Behavior policy: 0.9 left, 0.1 right

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (Tsitsiklis and Van Roy, 1999) 

inf
c

∥v − (vπ + ce)∥dπ

+1

+2

1

3

2 6

5

0

4 78

PREDICTION
RESULTS

Learning curves

Differential TD-learning
(off-policy)

Timesteps

Differential TD-learning
(on-policy)

Average Cost TD-learningRMSVE
(TVR)

(30 runs)

Value error Error in reward-rate estimate

PREDICTION
RESULTS

Learning curves

Differential TD-learning
(off-policy)

Timesteps

Differential TD-learning
(on-policy)

Average Cost TD-learningRMSVE
(TVR)

(30 runs)

Differential TD-learning
(off-policy)

Timesteps

Differential
TD-learning
(on-policy)

Average Cost
TD-learning

Reward
Rate
Error

(30 runs)

left rightValue error Error in reward-rate estimate

α

η = 0.125η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

η = 0.125

η = 2
η = 1

η = 0.5

η = 0.25

PREDICTION
RESULTS

Sensitivity analysis (value error)

α

η = 0.125η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

η = 0.125

η = 2
η = 1

η = 0.5

η = 0.25

PREDICTION
RESULTS

Sensitivity analysis (value error)

▸ Differential TD-learning converges faster for a wide range of parameters.

α

η = 0.125η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

η = 0.125

η = 2
η = 1

η = 0.5

η = 0.25

PREDICTION
RESULTS

Sensitivity analysis (value error)

▸ Differential TD-learning converges faster for a wide range of parameters.

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Differential TD-learning
(off-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

η = 0.125η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

η = 0.125

η = 2
η = 1

η = 0.5

η = 0.25

PREDICTION
RESULTS

Sensitivity analysis (value error)

▸ Differential TD-learning converges faster for a wide range of parameters.

▸ Differential TD-learning works in the off-policy setting as well.

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Differential TD-learning
(off-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free
prediction algorithm 

3. A general technique to estimate the actual value
function rather than the value function plus an offset

A family of average-reward learning and planning algorithms,  
including:

CENTERING
MOTIVATION

CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

v = vπ + ceSolutions:

CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

v = vπ + ceSolutions:

CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce

CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v

CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[Rt+1 − r̄ + v(s′￼)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v
r(π) = dT

π rπ

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

Ft+1(St) ≐ Ft(St) + βtρtΔt

V̄t+1 ≐ V̄t + κβtρtΔt

Δt ≐ Vt(St) − V̄t + Ft(St+1) − Ft(St)

System 2

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

Ft+1(St) ≐ Ft(St) + βtρtΔt

V̄t+1 ≐ V̄t + κβtρtΔt

Δt ≐ Vt(St) − V̄t + Ft(St+1) − Ft(St)

System 2

 Theorem 3 (informal)
 
If the previous assumptions hold, then the Centered
Differential TD-learning algorithm converges a.s.:  

 to , to the centered differential value functionR̄t r(π) Vt − V̄t e

CENTERING
DOMAIN EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸ 10,000 steps

▸ 30 runs 

β ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

κ ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

+1

+2

1

3

2 6

5

0

4 78

CENTERING
DOMAIN EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸ 10,000 steps

▸ 30 runs 

β ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

κ ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (the usual one) 

∥v − vπ∥dπ

+1

+2

1

3

2 6

5

0

4 78

CENTERING
RESULTS

RVI Q-learning

Differential
Q-learning

Centered Differential Q-learning

RMSVE
(30 runs)

Timesteps

Learning curves

CENTERING
RESULTS

Average
RMSVE

over
10k steps
(30 runs)

β

Centered Differential Q-learning

κ = 0.125

κ = 2κ = 1

κ = 0.5

κ = 0.25

Sensitivity analysis

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free
prediction algorithm 

3. A general technique to estimate the actual value
function rather than the value function plus an offset

A family of average-reward learning and planning algorithms,  
including:

TAKEAWAY

TAKEAWAY

▸ The Differential family of methods for learning and
planning in average-reward MDPs:

▸ is guaranteed to converge,

▸ results in good performance, and

▸ is easy to use. 

TAKEAWAY

▸ The Differential family of methods for learning and
planning in average-reward MDPs:

▸ is guaranteed to converge,

▸ results in good performance, and

▸ is easy to use. 

▸ As a result, average-reward reinforcement learning is  
now more appealing and accessible.

FUTURE WORK

FUTURE WORK

▸ Theoretical extension of our tabular algorithms to  
function approximation 

FUTURE WORK

▸ Theoretical extension of our tabular algorithms to  
function approximation 

▸ Extension to SMDPs so they can be used with  
temporal abstractions like options 

FUTURE WORK

▸ Theoretical extension of our tabular algorithms to  
function approximation 

▸ Extension to SMDPs so they can be used with  
temporal abstractions like options 

▸ Extension of our one-step algorithms to n-step and  
lambda returns, as well as eligibility traces 

FUTURE WORK

▸ Theoretical extension of our tabular algorithms to  
function approximation 

▸ Extension to SMDPs so they can be used with  
temporal abstractions like options 

▸ Extension of our one-step algorithms to n-step and  
lambda returns, as well as eligibility traces 

▸ Analysis of exploration techniques in the  
average-reward setting

• Paper: https://arxiv.org/abs/2006.16318 

• Code: https://github.com/abhisheknaik96/average-reward-methods

THANK YOU

https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods

