LEARNING AND PLANNING
IN AVERAGE-REWARD MDPS

Yi Wan*, Abhishek Naik*, Richard S. Sutton

{wan6, anaik1, rsutton}@ualberta.ca

ICML 2021

OUTLINE

» Contributions
» Background
» Problem setting
» Related work
» Algorithms and Experiments
» Control
» Prediction
» Centering

» Conclusions

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

3. A general technique to estimate the actual value
function rather than the value function plus an offset

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems * Total-reward objective

* Discounted objective

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems * Total-reward objective

* Discounted objective

Continuing problems

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems * Total-reward objective

* Discounted objective

. * Discounted objective
Continuing problems

* Average-reward objective

PROBLEM SETTING

PROBLEMS AND OBJECTIVES

Episodic problems * Total-reward objective

* Discounted objective

- * Discounted objective
Continuing problems
* | Average-reward objective

PROBLEM SETTING

BACKGROUND

PROBLEM SETTING

BACKGROUND

» Finite MDPs

BACKGROUND

» Finite MDPs
» Tabular representation

PROBLEM SETTING

BACKGROUND

» Finite MDPs
» Tabular representation

1 n
Reward rate r(m,s) = lim — Z E[R|Sy=s,A¢9,_1 ~ 7]

n—-oo Nn
=

PROBLEM SETTING

BACKGROUND

» Finite MDPs
» Tabular representation

|
Reward rate r(w,s) = lim — Z E[R Sy =s,Ap,_1 ~ 7] = rn)

n
n—-oo Nn .
= (Recurrent MDP)

PROBLEM SETTING

BACKGROUND Oy

» Finite MDPs O 4
. ~
» Tabular representation O

|
Reward rate r(w,s) = lim — Z E[R Sy =s,Ap,_1 ~ 7] = rn)

n
n—-oo Nn .
= (Recurrent MDP)

PROBLEM SETTING

BACKGROUND Oy

» Finite MDPs O 4
. ~
» Tabular representation O

|
Reward rate r(w,s) = lim — Z E[R Sy =s,Ap,_1 ~ 7] = rn)

n
n—-oo Nn .
= (Recurrent MDP)

r«(s) = sup r(rx, s)

PROBLEM SETTING

BACKGROUND Oy

» Finite MDPs O 4
. ~
» Tabular representation O

|
Reward rate r(w,s) = lim — Z E[R Sy =s,Ap,_1 ~ 7] = rn)

n
n—oo N 1
= (Recurrent MDP)

r«(s) =supr(m,s) =r. (Communicating MDP)
/4

PROBLEM SETTING

BACKGROUND oN

/
t Ot O
» Finite MDPs O 4 O
» Tabular representation v\C)

|
Reward rate r(w,s) = lim — Z E[R Sy =s,Ap,_1 ~ 7] = rn)

n
n—oo N 1
= (Recurrent MDP)

r«(s) =supr(m,s) =r. (Communicating MDP)
/4

PROBLEM SETTING

BACKGROUND oN

/
t Ot O
» Finite MDPs O 4 O
» Tabular representation \O

1 n
Reward rate r(mw,s) = Ilm — Z E[R|Sy=s,A¢9,_1 ~ 7] = r(x)
n—-oo N

=1 (Recurrent MDP)

r«(s) =supr(m,s) =r. (Communicating MDP)
/4

n k

Differential T l B - N
value function Val$) = r}ggo . ; 21 E[R, — r(n)[Sy =8, Ag,1 ~ 7] Vs
=1 =

BACKGROUND

BELLMAN EQUATIONS

BACKGROUND

BELLMAN EQUATIONS

Evaluation v(s) = Z n(als) Zp(s’, r|s,a) [r —7r+ v(s’)] Vs

BACKGROUND

BELLMAN EQUATIONS

Evaluation v(s) = Z n(als) Zp(s’, r|s,a) [r —7r+ v(s’)] Vs

Optimality q(s,a) = Zp(s’, r|s,a) [r — 7+ max g(s’, a’)] Vs, a
o

s'r

BACKGROUND

BELLMAN EQUATIONS

Evaluation v(s) = Z n(als) Zp(s’, r|s,a) [r —7r+ v(s’)] Vs

Optimality q(s,a) = Zp(s’, r|s,a) [r — 7+ max g(s’, a’)] Vs, a
o

s'r

If the MDP is recurrent, the solution of 7 is unique, and

the solution of v or g is unique up to an additive constant.

CLASSIFICATION OF ALGORITHMS

CLASSIFICATION OF ALGORITHMS

Learning algorithms

CLASSIFICATION OF ALGORITHMS

On-/off-policy ~ Learning algorithms

CLASSIFICATION OF ALGORITHMS

On-/off-policy ~ Learning algorithms

Planning algorithms

CLASSIFICATION OF ALGORITHMS

On-/off-policy ~ Learning algorithms
Combined
} learning and planning

algorithms
Planning algorithms

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward
learning + combined
algorithms

Prediction

Control

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward
learning + combined
algorithms

Prediction

Control

Average Cost TD (1999)

LSTD (2002)

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward
learning + combined
algorithms

Prediction Control
Average Cost TD (1999) ACtorJ"églfz(%ggf ’0)2009)
LSTD (2002) Politex (2019)

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward

learning + combined Prediction Control
algorithms

Actor-critic (2000, 2009)
UCRL2 (2010)
Politex (2019)

Average Cost TD (1999)
LSTD (2002)

Wen et al. (2020)
GradientDICE (2020)

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward
learning + combined
algorithms

Prediction Control
Average Cost TD (1999) ACtorJ"églfz(%ggf ’0)2009)
LSTD (2002) Politex (2019)

Wen et al. (2020)
GradientDICE (2020)

R-learning (1993)
Singh (1994)
RVI Q-learning (2001)
Gosavi (2004)

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (LEARNING + COMBINED)

BACKGROUND

Average-reward
learning + combined
algorithms

Prediction Control
Average Cost TD (1999) ACtorJ"églfz(%ggf ’0)2009)
LSTD (2002) Politex (2019)

Wen et al. (2020)
GradientDICE (2020)

Differential TD-learning

R-learning (1993)
Singh (1994)
RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

LLegend: Tabular, Function Approximation, Missing theoretical results, Ours

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

» Value iteration (Bellman 1957)
» Policy iteration (Howard 1960)
» Relative value iteration (White 1963)

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

» Value iteration (Bellman 1957)

» Policy iteration (Howard 1960) Non-incremental

» Relative value iteration (White 1963)

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

» Value iteration (Bellman 1957)
» Policy iteration (Howard 1960) Non-incremental

» Relative value iteration (White 1963)

» Jalali and Ferguson (1990)
» RVI Q-planning (Abounadi et al. 2001)
» Linear Programming Methods (e.g., Wang 2017)

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

» Value iteration (Bellman 1957)
» Policy iteration (Howard 1960) Non-incremental

» Relative value iteration (White 1963)

» Jalali and Ferguson (1990)
» RVI Q-planning (Abounadi et al. 2001)
» Linear Programming Methods (e.g., Wang 2017)

Incremental

RELATED WORK (PLANNING)

BACKGROUND

Average-reward planning algorithms

» Value iteration (Bellman 1957)
» Policy iteration (Howard 1960) Non-incremental

» Relative value iteration (White 1963)

» Jalali and Ferguson (1990)
» RVI Q-planning (Abounadi et al. 2001)
» Linear Programming Methods (e.g., Wang 2017)

Incremental

» Differential TD-planning, Differential Q-planning

CONTROL

ALGORITHM MOTIVATION

CONTROL

ALGORITHM MOTIVATION

e oo St,At,Rt'I'l, St-_l_l, ¢ o0

CONTROL

ALGORITHM MOTIVATION

e oo St,At,Rt'I'l, St-_l_l, ¢ o0

Rt+1 — Rt + ﬂ(Rt+1 - Rt)

CONTROL

ALGORITHM MOTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e oo St,At,Rt'I'l, St-_l_l, ¢ o0

Rt+1 — Rt + :B(Rt+1 - Rt)

CONTROL

ALGORITHM MOTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e oo St,At,Rt'I'l, Sl-_l_l, ¢ o0

Rt+1 — Rt + :B(Btﬂ - R;)

Conventional error

CONTROL

ALGORITHM MOTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e oo St,At,Rt'I'l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'B(Bﬂrl B Ri) on-policy setting

Conventional error

CONTROL

ALGORITHM MQTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e o oo St,At,Rt_I_l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'Bq{f“ B Ri) on-policy setting

Conventional error

v(s) = Z n(als) Zp(s’, r|s,a) [r — 7+ v(s’)] Vs

CONTROL

ALGORITHM MQTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e o oo St,At,Rt_I_l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'B(Bfﬂ B Ri) on-policy setting

Conventional error

v(s) = Z n(als) Zp(s’, r|s,a) [r — 7+ v(s’)] Vs

r= Z w(als) Zp(s’, r|s,a) [r — v(s) + v(s’)] Vs

CONTROL

ALGORITHM MQTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

s oy St,At,Rt_I_l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'B(Bfﬂ B Ri) on-policy setting

Conventional error

v(s) = Z n(als) Zp(s’, r|s,a) [r — 7+ v(s’)] Vs
r= Z Jr(als)Zp(s’, r|s,a) [r — v(s) + v(s’)] Vs

Rt+1 — Rt + :B (Rt+1 I V(St) + V(St+1) I Rt)

CONTROL

ALGORITHM MQTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

e

s oy St,At,Rt_I_l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'B(Bfﬂ B Ri) on-policy setting

Conventional error

v(s) = Z n(als) Zp(s’, r|s,a) [r — 7+ v(s’)] Vs

r= Z w(als) Zp(s’, r|s,a) [r — v(s) + v(s’)] Vs

Ry =R+ B(Royy — V(S) + V(S — R,)

CONTROL

ALGORITHM MQTIVATION

new_estimate = old_estimate + stepsize*(target - old_estimate)

s oy St,At,Rt_I_l, St-_l_l, ¢ o0

_ _ — Restricted to the
R =R, + 'B(Bfﬂ B Ri) on-policy setting

Conventional error

v(s) = Z n(als) Zp(s’, r|s,a) [r — 7+ v(s’)] Vs
r= Z Jr(als)Zp(s’, r|s,a) [r — v(s) + v(s’)] Vs

Rt+1 — Rt + :B (Rt+1 I V(St) + V(St+1) I Rt)

TD error

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING

5t = Rt+1 I Rt + max Qt(St+1’ a) I Qt(St’ At)

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING

52‘ = Rt+1 I Rt + max Qt(St+1’ a) I Qt(St’ At)

Q1055 A) = 045, A) + a0,
Rt+1 = Rt + noo,

CONTROL ALGORITHM

DIFFERENTIAL Q-LEARNING

5t = Rt+1 I Rt + max Qt(Sl‘+1’ a) I Qt(St’ At)

Q1055 A) = 045, A) + a0,
Rt+1 = Rt + noo,

If the Bellman optimality equation has a unique solution for r* and

a unique solution for g* up to an additive constant, under Borkar’s
(1998) asynchronous stochastic-approximation assumptions,

Differential Q-learning algorithm converges a.s.:

e R tor,

(), to a solution of the Bellman optimality equation, and
e r(m,s)tor:forall s where z, is a greedy policy w.r.t. Q..

CONTROL ALGORITHMS

PSEUDOCODE

Algorithm 1: Ditferential Q-learning (one-step off-policy control)

Input: The policy b to be used (e.g., e-greedy)
Algorithm parameters: step size o, n
1 Initialize Q(s, a) Vs, a; R arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do

4 A < action given by b for S

5 Take action A, observe R, S’

6 0 = R— R+ max,Q(S",a) — Q(S,A)
: { Q(S, 4) = Q(S, A) + as

8 R =R+ nad

9 S =9

10 end

11 return Q)

CONTROL ALGORITHMS

PSEUDOCODE

Algorithm 1: Ditferential Q-learning (one-step off-policy control)

Input: The policy b to be used (e.g., e-greedy)
Algorithm parameters: step size o, n
1 Initialize Q(s, a) Vs, a; R arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do

4 A < action given by b for S

5 Take action A, observe R, S’

6 0 = R— R+ max,Q(S",a) — Q(S,A)

7 { Q(S,A) =Q(S,A) + ad

3 g : 5, +nad RVI Q-learning

10 end 0111(Ss A) = OSi A) + (R~ F(O)

11 return Q) +max QS 1, a) — OLS, At))

CONTROL EXPERIMENTS

DOMAIN

» Access Control Queueing Task (Sutton & Barto 2018, Ch.10)

CONTROL EXPERIMENTS

DOMAIN

» Access Control Queueing Task (Sutton & Barto 2018, Ch.10)

N E BN N ENNNLE.
N S III N .

7

» 10 servers, 4 priorities
» p=0.06 4 K2 | 4

CONTROL EXPERIMENTS

» a € {0.0015625, 0.00625, 0.025, 0.1, 0.4}

» n € {0.125, 0.25, 0.5, 1, 2}
» 80,000 steps

» 30 runs
» € =0.1

20000 40000 60000 80000

Timesteps

CONTROL EXPERIMENTS

» a € {0.0015625, 0.00625, 0.025, 0.1, 0.4}

» n € {0.125, 0.25, 0.5, 1, 2}
» 80,000 steps

» 30 runs
» € =0.1

20000 40000 60000 80000

Timesteps

CONTROL EXPERIMENTS

» a € {0.0015625, 0.00625, 0.025, 0.1, 0.4}

» n € {0.125, 0.25, 0.5, 1, 2}
» 80,000 steps

» 30 runs
» € =0.1

20000 40000 60000 80000

Timesteps

CONTROL EXPERIMENTS

Differential Q-learning
2.6

2.5

Reward
rate
over

2.4

80k steps 2-3

(30 runs)
2.2

2.1

0.0015625 0.00625

CONTROL EXPERIMENTS

Differential Q-learning
2.6

2.5

Reward
rate
over

2.4

80k steps 2-3

(30 runs)
2.2

2.1

0.0015625 0.00625 0.025
a

» Differential Q-learning’s performance varies only slightly
over a wide range of parameter values.

CONTROL EXPERIMENTS

2.6

2.5

Reward
rate
over

2.4

80k steps 2-3

(30 runs)
2.2

2.1

0.0015625

Differential Q-learning

0.00625 0.025
a

2.6

2.5

Reward
rate
over
80k steps 2-3
(30 runs)
2.2

24

2.1

0.0015625

RVI Q-learning

0.00625 0.025

a

» Differential Q-learning’s performance varies only slightly
over a wide range of parameter values.

CONTROL EXPERIMENTS

2.6

2.5

Reward
rate
over

80k steps 2-3

(30 runs)
2.2

2.4

2.1

0.0015625

Differential Q-learning

0.00625 0.025
a

2.6

2.5

Reward
rate
over

24

80k steps 2-3

(30 runs)
2.2

2.1

0.0015625

RVI Q-learning

0.00625 0.025

a

» Differential Q-learning’s performance varies only slightly
over a wide range of parameter values.

» RVI Q-learning’s performance depends significantly
on the choice of the reference state.

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

2. The first proven-convergent off-policy model-free
prediction algorithm

ALGORITHM

PREDICTION

ALGORITHM

PREDICTION

5t = Rt+1 I Rt + Vt(St+1) I Vt(St)

ALGORITHM

PREDICTION

5t = Rt+1 I Rt + Vt(St+1) I Vt(St)

Vir1(S) = ViI(S) + ap.0,
R, =R, +napo,

ALGORITHM

PREDICTIUN Differential TD-learning

5t = Rt+1 I Rt + Vt(St+1) I Vt(St)

Vir1(S) = ViI(S) + ap.0,
Rr+1 = Rt + nop,0,

ALGORITHM

PREDICTION Differential TD-learning

5t = Rt+1 I Rt + Vt(St+1) I Vt(St)

Vi (S) = VI(S) + ap,0,
R. 1 = R, +nop,o,

If 1) the MDP is recurrent,
2) the stepsizes are decreased appropriately,
3) all the states are updated infinite number of times,
4) the maximum ratio of the update frequencies is finite,

5) b covers all the actions that 7 may choose in all states,

then the Differential TD-learning algorithm converges a.s.:
R, to r(x), V,to a solution of the Bellman evaluation equation.

ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes o, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for S

4

5

Take action A, observe R, S’
§=R—-R+V(S)-V(S)
. _ =w(A]S)

P = B(A[S)

7 V(S)=V(S)+ apd

8 R = R + napd

9 S =5

10 end

11 return V

ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes a, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for .S

4

5

Take action A, observe R, S’

d = R—R+V(S’) —V(S)
_ 7w(A]S)

P = B(A]S)

6
7 V(S)=VI(S)+ apd
8 R = R+ napd
9 S =9

10 end

11 return V

Average Cost TD-learning

R =R +na(R, —R)

ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes a, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for .S

4

5

Take action A, observe R, S’

d = R—R+V(S’) —V(S)
_ 7w(A]S)

P = B(A]S)

6

7 V(S)=VI(S)+ apd
8 R = R+ napd
9

S =9 (restricted to on-policy)

Average Cost TD-learning

R =R +na(R, —R)

10 end
11 return V

DOMAIN

PREDICTION

» Two Loop Task

PORXIWON
@ @ @

@*@ Q*@

4

4

4

4

4

4

4

EXPERIMENT
= [0.5, 0.5], by = [0.9, 0.1]

a € {0.025, 0.05, 0.1, 0.2, 0.4}
n € {0.125, 0.25, 0.5, 1, 2}

e = 0.1

10,000 steps

30 runs
Target policy: 0.5 left, 0.5 right
Behavior policy: 0.9 left, 0.1 right

DOMAIN EXPERIMENT

PREDICTION » 7y =105, 0.5], by = [0.9, 0.1]

v a € {0.025, 0.05, 0.1, 0.2, 0.4}
» Two Loop Task » n € {0.125, 0.25, 0.5, 1, 2}

» ¢ = 0.1
» 10,000 steps

@ +1 @ » 30 runs
@ @ @ » Target policy: 0.5 left, 0.5 right

» Behavior policy: 0.9 left, 0.1 right

@ @ ‘ @ » Evaluation metric:
h
» RMSVE

=, .

DOMAIN EXPERIMENT

PREDICTION » 7y =105, 0.5], by = [0.9, 0.1]

v a € {0.025, 0.05, 0.1, 0.2, 0.4}
» Two Loop Task » n € {0.125, 0.25, 0.5, 1, 2}

» ¢ = 0.1
» 10,000 steps

@ +1 @ » 30 runs
@ @ @ » Target policy: 0.5 left, 0.5 right

» Behavior policy: 0.9 left, 0.1 right

@ @ ‘ @ » Evaluation metric:
h
» RMSVE

it |lv — (v, + ce)ll;

C

(Tsitsiklis and Van Roy, 1999)

RESULTS

Learning curves

Value error

Differential TD-learning
(on-policy)

Differential TD-learning
(off-policy)

2000 4000 6000 8000 10000
Timesteps

RESULTS

Learning curves

Value error

0.08
Differential TD-learning

_poli
(on-policy) Reward -0

Rate
Error 0.04
(30 runs)

Differential TD-learning 0.02
(off-policy)
' 0.00

2000 4000 6000 8000
Timesteps

10000

Error in reward-rate estimate

Differential
TD-learning

| (on-policy)

Differential TD-learning

(off-policy)

2000 4000 6000 8000
Timesteps

10000

RESULTS

Sensitivity analysis (value error)

. Differential TD-learning
Average Cost TD-learning (on-policy)

0.3 -
Average

RMSVE
(TVR) 0.2-
over
10k steps
(30 runs) 0.11

0.025 0.05 0.1 0.2 0.4 0.025 0.05 0.1 0.2 0.4

RESULTS

0.3 1

Average

RMSVE
(TVR) 0.2
over

10k steps

(30 runs) 0.1

0.0

4

Sensitivity analysis (value error)

Average Cost TD-learning

Differential TD-learning

(on-policy)

0.025 005 01 0.2

0.4 0.025

0.05

Differential TD-learning converges faster for a wide range of parameters.

RESULTS

Sensitivity analysis (value error)

Differential TD-learning
05 - (off-policy)

0.4
Average

RMSVE 0.3
(TVR)
over
10k steps 02
(30 runs)
0.1 1

0.025 0.05 0.1 0.2 0.4

» Differential TD-learning converges faster for a wide range of parameters.

RESULTS

Sensitivity analysis (value error)

Differential TD-learning
05 - (off-policy)

0.4
Average

RMSVE 0.3
(TVR)
over
10k steps 02

30 runs
() 0.1

0.025 0.05 0.1 0.2 0.4

» Differential TD-learning converges faster for a wide range of parameters.

» Differential TD-learning works in the off-policy setting as well.

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

3. A general technique to estimate the actual value
function rather than the value function plus an offset

MOTIVATION

CENTERING

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

MOTIVATION

CENTERING
Recall: v(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

— there is only one centered differential value function

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

— there is only one centered differential value function
v=yv_+ce

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

— there is only one centered differential value function
v=yv_+ce

— c=d!v

MOTIVATION

CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

— there is only one centered differential value function
v=yv_+ce

— c=d!v

r(mw) = d,{ r,

ALGORITHM

CENTERING

-~

_

0= Riyy — R+ VilSi1) — Vi(S) \
Vi (S) = VI(S) + ap.6, System 1
Riyy = R+ nayp,d, J

ALGORITHM

CENTERING

g 8 = Ry — R+ Vi(Sip) — VI(S) I
Vie1(S) = Vi(S) + ap/é, System 1

\ Rt+1 = Rt + na,p,o,)

g A, = V(S) =V, + F(S,.) — F(S))
Fi1(S) = F(S) + B.pA, System 2

\ Vt+1 = Vt + Kkp,p,A, j

ALGORITHM

CENTERING

g O = Ripy = R+ V(Si1) — Vi(S))
Vie1(S) = V(S) + ayp,5, System 1

_ R, =R, +na,pd, y

g A, = V(S) —V,+ F(S,.) — F(S))
Fi1(S) = FUS) + bipA, System 2

_ V.=V, +xbpA, y

If the previous assumptions hold, then the Centered

Differential TD-learning algorithm converges a.s.:
R, to r(m), V, — V, e to the centered differential value function

DOMAIN EXPERIMENT

CENTERING

» € {0.025, 0.05, 0.1, 0.2, 0.4}
» Two Loop Task » k€ {0.125, 0.25, 0.5, 1, 2}

» ¢ =0.1
» 10,000 steps

@ +1 @ » 30 runs
@ @ @

@—*@ Q*@

DOMAIN

CENTERING

» Two Loop Task

PORXIWON
@ @ @

@*@ 0*@

4

4

4

4

4

EXPERIMENT

B € {0.025, 0.05, 0.1, 0.2, 0.4)
k € {0.125, 0.25, 0.5, 1, 2}

e =0.1
10,000 steps

30 runs

Evaluation metric:

» RMSVE

v = vl

(the usual one)

RESULTS

CENTERING

RVI Q-learning

RMSVE
(30 runs)

L

Centered Differential Q-learning

2000 4000 6000 8000 10000

Timesteps

Learning curves

RESULTS

0.06

0.05

Average
RMSVE

10k steps

(30 runs) .02

0.04

0.01

0.00

Centered Differential Q-learning

0.05

Sensitivity analysis

CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

3. A general technique to estimate the actual value
function rather than the value function plus an offset

TAKEAWAY

TAKEAWAY

» The Differential family of methods for learning and
planning in average-reward MDPs:

» is guaranteed to converge,
» results in good performance, and

» IS easy to use.

TAKEAWAY

» The Differential family of methods for learning and
planning in average-reward MDPs:

» is guaranteed to converge,
» results in good performance, and

» IS easy to use.

» As a result, average-reward reinforcement learning is
now more appealing and accessible.

FUTURE WORK

FUTURE WORK

» Theoretical extension of our tabular algorithms to
function approximation

FUTURE WORK

» Theoretical extension of our tabular algorithms to
function approximation

» Extension to SMDPs so they can be used with
temporal abstractions like options

FUTURE WORK

» Theoretical extension of our tabular algorithms to
function approximation

» Extension to SMDPs so they can be used with
temporal abstractions like options

» Extension of our one-step algorithms to n-step and
lambda returns, as well as eligibility traces

FUTURE WORK

» Theoretical extension of our tabular algorithms to
function approximation

» Extension to SMDPs so they can be used with
temporal abstractions like options

» Extension of our one-step algorithms to n-step and
lambda returns, as well as eligibility traces

» Analysis of exploration techniques in the
average-reward setting

THANK YOU

o Code: https./github.com/abhisheknaik96/average-reward-methods

https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods

