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BELLMAN EQUATIONS

Evaluation v(s) = Z n(als) Zp(s’, r|s,a) [r —7r+ v(s’)] Vs

Optimality q(s,a) = Zp(s’, r|s,a) [r — 7+ max g(s’, a’)] Vs, a
o

s'r

If the MDP is recurrent, the solution of 7 is unique, and

the solution of v or g is unique up to an additive constant.
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5t = Rt+1 I Rt + max Qt(Sl‘+1’ a) I Qt(St’ At)

Q1055 A) = 045, A) + a0,
Rt+1 = Rt + noo,

If the Bellman optimality equation has a unique solution for r* and

a unique solution for g* up to an additive constant, under Borkar’s
(1998) asynchronous stochastic-approximation assumptions,

Differential Q-learning algorithm converges a.s.:

e R tor,

(), to a solution of the Bellman optimality equation, and
e r(m,s)tor:forall s where z, is a greedy policy w.r.t. Q..
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Algorithm 1: Ditferential Q-learning (one-step off-policy control)

Input: The policy b to be used (e.g., e-greedy)
Algorithm parameters: step size o, n
1 Initialize Q(s, a) Vs, a; R arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do

4 A < action given by b for S

5 Take action A, observe R, S’

6 0 = R— R+ max,Q(S",a) — Q(S,A)

7 { Q(S,A) =Q(S,A) + ad

3 g : 5, +nad RVI Q-learning

10 end 0111(Ss A) = OSi A) + (R~ F(O)

11 return Q) +max QS 1, a) — OLS, At))
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» Differential Q-learning’s performance varies only slightly
over a wide range of parameter values.

» RVI Q-learning’s performance depends significantly
on the choice of the reference state.
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5t = Rt+1 I Rt + Vt(St+1) I Vt(St)

Vi (S) = VI(S) + ap,0,
R. 1 = R, +nop,o,

If 1) the MDP is recurrent,
2) the stepsizes are decreased appropriately,
3) all the states are updated infinite number of times,
4) the maximum ratio of the update frequencies is finite,

5) b covers all the actions that 7 may choose in all states,

then the Differential TD-learning algorithm converges a.s.:
R, to r(x), V,to a solution of the Bellman evaluation equation.




ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes o, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for S

4

5

Take action A, observe R, S’
§=R—-R+V(S)-V(S)
. _ =w(A]S)

P = B(A[S)

7 V(S)=V(S)+ apd

8 R = R + napd

9 S =5

10 end

11 return V




ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes a, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for .S

4

5

Take action A, observe R, S’

d = R—R+V(S’) —V(S)
_ 7w(A]S)

P = B(A]S)

6
7 V(S)=VI(S)+ apd
8 R = R+ napd
9 S =9

10 end

11 return V

Average Cost TD-learning

R =R +na(R, —R)




ALGORITHM

PREDICTION

Algorithm 3: Differential TD-learning (one-step off-policy prediction)

Input: The policy 7 to be evaluated, and b to be used
Algorithm parameters: step sizes a, 7

1 Initialize V' (s) Vs, R arbitrarily (e.g., to zero)

2 while still time to train do

3 A < action given by b for .S

4

5

Take action A, observe R, S’

d = R—R+V(S’) —V(S)
_ 7w(A]S)

P = B(A]S)

6

7 V(S)=VI(S)+ apd
8 R = R+ napd
9

S =9 (restricted to on-policy)

Average Cost TD-learning

R =R +na(R, —R)

10 end
11 return V
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it |lv — (v, + ce)ll;

C

(Tsitsiklis and Van Roy, 1999)
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Sensitivity analysis (value error)

Differential TD-learning
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0.4
Average
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30 runs
( ) 0.1
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» Differential TD-learning converges faster for a wide range of parameters.

» Differential TD-learning works in the off-policy setting as well.
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CENTERING

Recall: Vv(s) = Z n(als) Zp(s’, r|s,a) [Rr+1 — 7+ v(s’)] Vs

Solutions: v =1v_+ce

I.e., the average of the differential value function is zero.

— there is only one centered differential value function
v=yv_+ce

— c=d!v

r(mw) = d,{ r,
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Vie1(S) = Vi(S) + ap/é, System 1

\ Rt+1 = Rt + na,p,o, )
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Fi1(S) = F(S) + B.pA, System 2
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ALGORITHM

CENTERING

g O = Ripy = R+ V(Si1) — Vi(S) )
Vie1(S) = V(S) + ayp,5, System 1

\_ R, =R, +na,pd, y

g A, = V(S) —V,+ F(S,.) — F(S) )
Fi1(S) = FUS) + bipA, System 2

\_ V.=V, +xbpA, y

If the previous assumptions hold, then the Centered

Differential TD-learning algorithm converges a.s.:
R, to r(m), V, — V, e to the centered differential value function
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DOMAIN

CENTERING

» Two Loop Task

PORXIWON
@ @ @

@*@ 0*@

4

4

4

4

4

EXPERIMENT

B € {0.025, 0.05, 0.1, 0.2, 0.4)
k € {0.125, 0.25, 0.5, 1, 2}

e =0.1
10,000 steps

30 runs

Evaluation metric:

» RMSVE

v = vl

(the usual one)
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RVI Q-learning
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L

Centered Differential Q-learning
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CONTRIBUTIONS

A family of average-reward learning and planning algorithms,
including:

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

3. A general technique to estimate the actual value
function rather than the value function plus an offset
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TAKEAWAY

» The Differential family of methods for learning and
planning in average-reward MDPs:

» is guaranteed to converge,
» results in good performance, and

» IS easy to use.

» As a result, average-reward reinforcement learning is
now more appealing and accessible.
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FUTURE WORK

» Theoretical extension of our tabular algorithms to
function approximation

» Extension to SMDPs so they can be used with
temporal abstractions like options

» Extension of our one-step algorithms to n-step and
lambda returns, as well as eligibility traces

» Analysis of exploration techniques in the
average-reward setting



THANK YOU

o Code: https./github.com/abhisheknaik96/average-reward-methods



https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods

