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  Theorem 1 (informal) 
If the Bellman optimality equation has a unique solution for  and 
a unique solution for  up to an additive constant, under Borkar’s 
(1998) asynchronous stochastic-approximation assumptions, 
Differential Q-learning algorithm converges a.s.: 

•  to , 


•  to a solution of the Bellman optimality equation, and 


•  to  for all  where  is a greedy policy w.r.t. . 
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▸ p = 0.06
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on the choice of the reference state. 
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  Theorem 2 (informal) 
If  1) the MDP is recurrent, 

     2) the stepsizes are decreased appropriately, 

     3) all the states are updated infinite number of times, 
     4) the maximum ratio of the update frequencies is finite, 
     5)  covers all the actions that  may choose in all states, 
  
then the Differential TD-learning algorithm converges a.s.:  

 to ,  to a solution of the Bellman evaluation equation. 
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▸ Differential TD-learning works in the off-policy setting as well.
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CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states 

2. The first proven-convergent off-policy model-free 
prediction algorithm 

3. A general technique to estimate the actual value 
function rather than the value function plus an offset

A family of average-reward learning and planning algorithms,  
including:
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  Theorem 3 (informal)
 
If the previous assumptions hold, then the Centered 
Differential TD-learning algorithm converges a.s.:  

 to ,  to the centered differential value functionR̄t r(π) Vt − V̄t e
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▸ Evaluation metric: 


▸ RMSVE
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▸ The Differential family of methods for learning and 
planning in average-reward MDPs:


▸ is guaranteed to converge, 


▸ results in good performance, and 


▸ is easy to use. 

▸ As a result, average-reward reinforcement learning is  
now more appealing and accessible.
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FUTURE WORK

▸ Theoretical extension of our tabular algorithms to  
function approximation 

▸ Extension to SMDPs so they can be used with  
temporal abstractions like options 

▸ Extension of our one-step algorithms to n-step and  
lambda returns, as well as eligibility traces 

▸ Analysis of exploration techniques in the  
average-reward setting



• Paper: https://arxiv.org/abs/2006.16318 

• Code:  https://github.com/abhisheknaik96/average-reward-methods 

THANK YOU

https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods

