Privacy-Preserving Video Classification with

Convolutional Neural Networks

Sikha Pentyala
University of Washington Tacoma
sikha@uw.edu

Rafael Dowsley
Monash University
rafael.dowsley@monash.edu

Martine De Cock University of Washington Tacoma mdecock@uw.edu

Video Classification - Applications

Surveillance

- Security
 - o identify strangers, identify threatful actions, home monitoring systems,
 - o facial recognition, masked face detection and recognition
- Retail identify shoplifting
- Detecting concentration of students in online courses
- Activity recognition in care centers baby monitoring systems, detection of abusive activities

Behavioral analysis

- Gesture analysis
- Sentiment and mood analysis
- Driver drowsiness
- Stress detection
- Eye gaze estimation
- Face, gesture and body analysis for monitoring intervention-measure compliance for COVID-19

Many more ...

Video Classification - Undesirable Scenarios

Problem Statement

Find a solution to

- **Classify** a video
- Protect Alice's video
- Protect Bob's video classifier

with

- 'No' information leakage
- No special hardware
- Reduced computational complexity

using

Secure Multi-Party computation (SMC/MPC)

Step 1: Oblivious Frame Selection

ALICE

•

Alice's Frames A Nxhxwxc

Fran	ne 1	Fran	ne 2	Fran	ne 3	Frame 4	
1	2	9	10	5	6	13	14
3	4	11	12	7	8	15	16

Secure Flattening N: Total number of frames in video

h: Height of each frame

w: Width of each frame

c: Channels in the video

n: Number of frames to be selected

Bob's Frame Selection Matrix

B n x N
0 1 0 0
0 0 0 1

BOB

Flattened Matrix A flat N x (hxwxc)

Frame 1	1	2	3	4
Frame 2	9	10	11	12
Frame 3	5	6	7	8
Frame 4	13	14	15	16

Secure Matrix Multiplication

Selected Frames F_{flat}n x (hxwxc)

Frame 2 9 10 11 12

Frame 4 13 14 15 16

Secure Expansion

Selected Frames Fnxhxwxc

Frame 2 Frame 4
9 10 13 14
11 12 15 16

Parties hold the Secret Shares of the Expanded

Tensor

This example:

N: 4 frames in video

h:2

w : 2

c:1 (grayscale)

n: 2 frames selected

B selects Frame 2 and 4

Step 2: Private Frame Classification

Efficient secure image classification protocols available

- Operations for frame classification*:
 - \blacksquare Convolution: π_{DMM} , π_{DM}

 - \blacksquare Fully Connected layers: π_{DMM}
 - Softmax: π_{SOFT}

Approximated Softmax:**

$$f(u_i) = \begin{cases} \frac{\text{RELU}(u_i)}{\sum\limits_{j=1}^{C} \text{RELU}(u_j)}, & \text{if } \sum\limits_{j=1}^{C} \text{RELU}(u_j) > 0\\ \\ \frac{1/C}{C}, & \text{otherwise} \end{cases}$$

^{*} A. Dalskov, D. Escudero, and M. Keller. Secure evaluation of quantized neural networks. Proceedings on Privacy Enhancing Technologies, 2020(4):355–375, 2020.

^{**} P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38, 2017.

Step 3: Secure Label Aggregation

Protocol 3 Protocol $\pi_{\mathsf{LABELVIDEO}}$ for classifying a video securely based on the single-frame method

Input: A video $\mathcal V$ secret shared as a 4D-array $[\![A]\!]$, a frame selection matrix secret shared as $[\![B]\!]$, the parameters of the ConvNet model $\mathcal M$ secret shared as $[\![M]\!]$

Output: A secret share [L] of the video label

9: $[L] \leftarrow \pi_{\mathsf{ARGMAX}} ([prob_{\mathsf{sum}}])$

10: return $\llbracket L \rrbracket$

 Let [prob_{sum}] be a list of length C that is initialized with zeros in all indices.

```
2: [\![F]\!] \leftarrow \pi_{\mathsf{FSELECT}}([\![A]\!], [\![B]\!])
3: for all [\![F[j]\!]\!] do
4: [\![SM_{\mathsf{approx}}\!]\!] \leftarrow \pi_{\mathsf{FINFER}}([\![M]\!], [\![F[j]\!]\!])
5: for i=1 to C do
6: [\![prob_{\mathsf{sum}}[i]\!]\!] \leftarrow [\![prob_{\mathsf{sum}}[i]\!]\!] + [\![SM_{\mathsf{approx}}[i]\!]\!]
7: end for
8: end for
```

	SM _{approx} for Frames							
Labels →	1	2	3	4	5	6	7	
Frame 1	0	0	0	0	0.28	0	0.72	
Frame 2	0	0	0	0	0.55	0.45	0	
Frame 3	0	0	0	0	0.83	0.17	0	
Frame 4	0	0.21	0	0	0.48	0.31	0	

nei -							
$prob_{sum}$	0	0.21	0	0	2.14	0.93	0.72
110-							

Output Label L is 5

The probabilities for each class are summed up over all the frames.

Index with maximum probability is the class label

Experiments

- Emotion detection in a video
- RAVDESS dataset*
 - 1,116 videos for train/validation; 132 videos for testing
 - 7 emotions: happy, sad, angry, fearful, surprised, disgust, neutral
- Bob has trained CNN model with 1.5 M parameters
 - video preprocessing: face detection, alignment, cropping, resizing, converting to grayscale, normalization

^{*}S.R. Livingstone and F.A. Russo. The Ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS One, 13(5), 2018.

Experimental Setup

- 2PC/3PC/4PC: 2, 3 or 4 computing parties (servers), one of which may be corrupted by an adversary
- passive (semi-honest): corrupted party follows protocol instructions but tries to learn information from the messages it sees
- active (malicious): corrupted party may deviate from protocol instructions
- F32s Azure VMs: 32 vCPUs, 64 GiB Memory, connected over up to 14 Gbps link

Results

Accuracy over the test set: 56.8% (same as that in-the-clear - without secure pipeline)

Table 4. Averages for classifying one RAVDESS video of duration 3-5 seconds. Average metrics are obtained over a set of 10 such videos with a number of frames in the 7-10 range on F32s VMs with n_threads=32 in MP-SDPZ. VC: time to classify one video ($\pi_{LABELVIDEO}$); FS: time for frame selection for one video ($\pi_{FSELECT}$); FI: time to classify a selected frame for one video averaged over all selected frames in the videos (π_{FINFER}); LA: time taken for label aggregation (sum up all probabilities, π_{ARGMAX}). Communication is measured per party.

F32s V2	VMs	Time VC	Time FS	Time single FI	Time LA	Comm. VC
Passive	2PC 3PC	302.24 sec 8.69 sec	12.95 sec 0.07 sec		0.00500 sec 0.00298 sec	374.28 GB 0.28 GB
Active	2PC 3PC 4PC	6576.27 sec 27.61 sec 11.67 sec		759.211 sec 2.05 sec 0.57 sec	0.00871 sec 0.00348 sec 0.00328 sec	5492.38 GB 2.29 GB 0.57 GB

Conclusion and Future Work

- First baseline end-to-end privacy-preserving solution to classify a video using MPC
- Novel baseline MPC protocols for
 - oblivious frame selection
 - secure label aggregation
- Demonstrated feasibility of our solution to detect emotions in a video
 - with no information leakage (mathematically provable)
 - with state-of-the-art accuracy: as accurate as in-the-clear (without encryption)
 - no special hardware

Future directions

- Use of machine learning for intelligence frame selection
- Develop MPC protocols for other state-of-the-art video classification methods beyond single-frame technique

