

Taylor Expansion of Discount Factors

Yunhao Tang, Mark Rowland, Remi Munos, Michal Valko

Motivation

- Mismatch between policy gradient theory & practice
- Theory: discounted average

$$E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} Q_{\gamma}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) \right]$$

Practical heuristic: uniform average

$$E_{\pi} \left[\Sigma_{t=0}^{T} \mathbf{1}^{t} Q_{\gamma}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) \right]$$

Question: can we understand the gap?

Main take-away

- The discrepancy stems from the difference of objectives
- Theory studies discounted objective $V_{\gamma}^{\pi}(x)$
- Practices care about 'almost' undiscounted objective

$$E_{\pi}[\Sigma_{t=0}^{T} r_t | x_0 = x]$$

- Example: in MuJoCo cont control, we have T = 1000
- Insight: the practical heuristic can be seen as a partial gradient of the undiscounted objective

Two value functions

Examples:
$$\gamma = 0.99$$
, $T = 1000 \Rightarrow \gamma' = 0.999$

• Discounted objective with γ

$$V_{\mathbf{y}}^{\pi}(x) = E_{\pi}[\Sigma_{t=0}^{\infty} \mathbf{y}^{t} r_{t} | x_{0} = x]$$

• Undiscounted obj over horizon $T \approx \text{Discounted with } \gamma' = 1 - \frac{1}{T}$

$$E_{\pi}[\Sigma_{t=0}^{T}r_{t}|x_{0}=x] \approx V_{\gamma'}^{\pi}(x) = E_{\pi}[\Sigma_{t=0}^{\infty}(\gamma')^{t}r_{t}|x_{0}=x]$$

• What's the connection between $V_{\gamma}^{\pi}(x)$ and $V_{\gamma'}^{\pi}(x)$?

Taylor expansion of discount factors

• $V_{\gamma}^{\pi}(x)$ and $V_{\gamma}^{\pi}(x)$ are related through Taylor expansions

Proposition 3.1. The following holds for all $K \geq 0$,

$$V_{\gamma'}^{\pi} = \sum_{k=0}^{K} \left((\gamma' - \gamma)(I - \gamma P^{\pi})^{-1} P^{\pi} \right)^{k} V_{\gamma}^{\pi}$$

$$+ \underbrace{\left((\gamma' - \gamma)(I - \gamma P^{\pi})^{-1} P^{\pi} \right)^{K+1} V_{\gamma'}^{\pi}}_{\text{residual}}. \tag{9}$$
Residual term

When $\gamma < \gamma' < 1$, the residual norm converges to 0, which implies

Infinite series $V^{\pi}_{\gamma'} = \sum_{l=0}^{\infty} \left((\gamma' - \gamma)(I - \gamma) \right)$

$$V_{\gamma'}^{\pi} = \sum_{k=0}^{\infty} \left((\gamma' - \gamma)(I - \gamma P^{\pi})^{-1} P^{\pi} \right)^{k} V_{\gamma}^{\pi}. \tag{10}$$

A few properties of the expansion

• Further intuitions about the expansion: $V_{\gamma \prime}^{\pi}(x)$ is equivalent to

$$V_{\gamma}^{\pi}(x) + \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} (\gamma' - \gamma)(\gamma')^{t-1} V_{\gamma}^{\pi}(x_t) \, \middle| \, x_0 = x \right]$$
er approximation

Yalue function'

K-th order approximation

'Value function' with $V_{\gamma}^{\pi}(x)$ as the reward

$$V_{K,\gamma,\gamma'}^{\pi} \coloneqq \sum_{k=0}^{K} ((\gamma' - \gamma)(I - \gamma P^{\pi})^{-1} P^{\pi})^{k} V_{\gamma}^{\pi} . \implies V_{\gamma'}^{\pi}(x)$$

Can be estimated by bootstrapping with $V_{\gamma}^{\pi}(x)$

Policy gradient for $V_{\gamma'}^{\pi}$?

• Why not plug in PG formula for $V_{\nu'}^{\pi}$?

$$E_{\pi} \left[\sum_{t=0}^{\infty} (\gamma')^{t} Q_{\gamma'}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) \right]$$

- Variance might be too high, need to estimate $Q_{\gamma \prime}^{\pi}(x_t, a_t)$
- Need approximations

Practical heuristic as partial gradient

• The practical heuristic can be derived as a partial gradient through V_{ν}^{π}

$$E_{\pi} \left[\sum_{t=0}^{\infty} (\gamma')^{t} Q_{\gamma}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) \right]$$

 $Q_{\nu}^{\pi}(x,a)$ can be estimated with low variance

• When $\gamma' = 1$, if the horizon is finite of length T, we derive

$$E_{\pi} \left[\Sigma_{t=0}^{T} \mathbf{1}^{t} Q_{\gamma}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) \right]$$

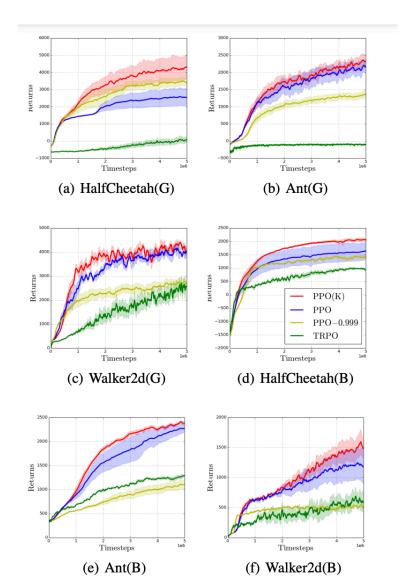
Implications for practical algorithms

- Insight: the practical heuristic can be seen as a partial gradient of the undiscounted objective
 - Some discrepancies: the horizon is truncated, so the problem is not Markovian...
- We can still improve current algorithms
 - Estimate advantage functions of a higher discount factors
 - Weigh the updates of PG algorithms

Experiments: advantage functions

Adapt Taylor expansions for advantage estimates

$$V_{K,\gamma,\gamma'}^{\pi} \coloneqq \sum_{k=0}^{K} ((\gamma' - \gamma)(I - \gamma P^{\pi})^{-1} P^{\pi})^k V_{\gamma}^{\pi}.$$

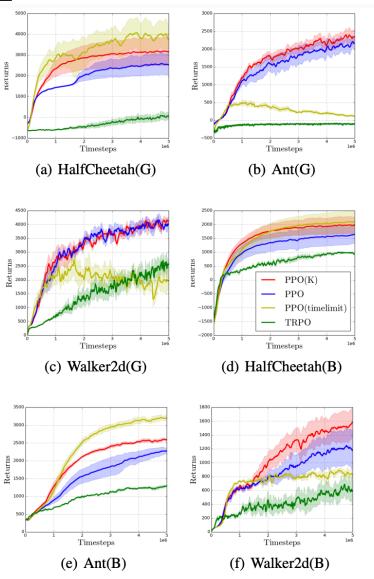


Experiments: weighted updates

Weigh PG updates based on

K-th order expansion of the objective

$$\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} w_{K,\gamma,\gamma'}(t)Q_t
abla_{ heta} \log \pi_{ heta}(a_t|x_t) \,\middle|\, x_0 = x
ight]$$



Summary

• **Theory**: discounted PG under γ \longrightarrow Too conservative

$$E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} Q_{\gamma}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) | x_{0} = x \right]$$

• **Theory**: discounted PG under γ' \longrightarrow Too high variance

$$E_{\pi}\left[\Sigma_{t=0}^{\infty}(\gamma')^{t}Q_{\gamma'}^{\pi}(x_{t},a_{t})\nabla_{\theta}\log\pi(a_{t}|x_{t})|x_{0}=x\right]$$

• Practical heuristic: can be derived as partial gradient

 $E_{\pi} \left[\sum_{t=0}^{\infty} (\gamma')^{t} Q_{\nu}^{\pi}(x_{t}, a_{t}) \nabla_{\theta} \log \pi(a_{t}|x_{t}) | x_{0} = x \right]$ Works in practice