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Motivation

» Mismatch between policy gradient theory & practice
« Theory: discounted average

En [Z?;()VtQ;/T (x¢, ar)Vglog m(a, ‘xt)]

* Practical heuristic: uniform average

Er [Zz;o 1tQ)7/T (x¢, ag)Vglog m(a, ‘xt)]

» Question: can we understand the gap?



Main take-away

 The discrepancy stems from the difference of objectives
» Theory studies discounted objective V*(x)

» Practices care about ‘almost’ undiscounted objective

Ern [217;:07% o = x]

» Example: in MuJoCo cont control, we have T = 1000

» Insight: the practical heuristic can be seen as a partial gradient
of the undiscounted objective



Two value functions Examples: y = 0.99,

T = 1000 =y’ = 0.999
 Discounted objective with y

W (x) = Eq[5201 1el%0 = ]

» Undiscounted obj over horizon T = Discounted withy' =1 — %

En[Zt=oTelxo = x] = Vf' (x) = Ex[ZZ0(v") 1elxo = x]

« What’s the connection between V,* (x) and V7 (x)?



Taylor expansion of discount factors

* ¥(x) and V} (x) are related through Taylor expansions
Proposition 3.1. The following holds for all K > 0,

K K-th order
(' = y)(I = yP™)" 1p7f)k %4 4@ammm cxpansion
k=0 in(y' —v)
Residual term ) + (' =N —~P)” Lpm) T Vi. O

N
residual

When v < 4" < 1, the residual norm converges to 0, which
implies

O

Uy / ™ — s k T
Infinite series ) V, = Y (Y= =yPT)'PT) V. (10)

k=0



A few properties of the expansion

- Further intuitions about the expansion: V}7(x) is equivalent to

Vr(2) +Ex [

 K-th order approximation with VT (x) as the reward
K
T . T\ — T T T
Vi = (Y =9I = yP") ' PRV . = VI(X)
k=0

& Can be estimated by bootstrapping with ¥/ (x)



Policy gradient for V;T, ?

» Why not plug in PG formula for V77

Er [Ztﬁo(V')tQ% (x¢, a¢)Vglog m(a, |xt)]

- Variance might be too high, need to estimate Q7, (x;, a;)
* Need approximations



Practical heuristic as partial gradient

 The practical heuristic can be derived as a partial gradient
through

En [Zt?io()”)tQ;/T (x¢, ar)Vglog m(a, |xt)]

& Q (x,a) can be estimated with low variance
« When vy’ = 1, if the horizon is finite of length T, we derive
Y

Ex [ZtT=0 1tQ)7/T (x¢, ar)Vglog m(ay, |Xt)]



Implications for practical algorithms

» Insight: the practical heuristic can be seen as a partial gradient
of the undiscounted objective

» Some discrepancies: the horizon is truncated, so the problem is not
Markovian...
« We can still improve current algorithms

« Estimate advantage functions of a higher discount factors
« Weigh the updates of PG algorithms



Experiments: advantage functions

Adapt Tavlor expansions for
Pt 7ayion &5P - ﬂ

advantage estimates O[MMN_M
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Experiments: weighted updates

Weigh PG updates based on ﬁ” /4%

K-th order expansion of the objective "
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Summary

* Theory: discounted PG under y mmm) Too0 conservative

Ex [Ztctx;())/tQ;/T (x¢, ar)Vglog m(ag|xe)|xg = x]
 Theory: discounted PG under y’ mmms) Too high variance

Ern [Zgio(y,)tQ;/Tr (x¢, ar)Vglog m(ae|x,)[xo = x]

 Practical heuristic: can be derived as partial gradient
=) \\orks in practice

Ern [Zﬁg(y')tQ{f (xe, ar)Vglog m(ae|x,)[xo = x]



