Integer Programming for Causal Structure Learning in the presence of Latent Variables

Sanjeeb Dash IBM Research AI

Joint work with Tian Gao (IBM), Rui Chen (U. Wisconsin-Madison)

ICML 2021

Outline

Bayesian Network Structure Learning

- Modeling Latent Variables
- ► Integer Programming Formulation to find optimal score
- Numerical Experiments

Bayesian Network Structure Learning

Bayesian Network: Directed acyclic graph (DAG) representing conditional probability relationships between variables.

 $P(X_1, X_2, X_3, X_n) = P(X_4 | X_1) P(X_3 | X_1, X_2) P(X_2 | X_1) P(X_1)$

BNSL Problem - Learn DAG from data: DP methods: Koivisto, Sood '04, Silander, Myllymäki '06 A* search: Yuan, Malone '13 Branch-and-bound: Campos, Ji '11 IP based solver GOBNILP: Bartlett, Cussens '13, '17 GOBNILP is a state-of-the-art method: Malone et. al. '17

Causal Bayesian Networks

Graphical Models where directed edges represent causal relationships
 DAG encodes structural equations

(Linear) Structural equations

$$\Leftrightarrow \begin{cases} x_A = \epsilon_A \\ x_B = \epsilon_B \\ x_C = b_{CA}x_A + b_{CE}x_E + \epsilon_C \\ x_D = b_{DB}x_B + b_{DE}x_E + \epsilon_D \\ x_E = \epsilon_E \end{cases}$$

Latent Variables

Goal: Learn causal network structures in the presence of latent vars.

We use **ancestral acyclic directed mixed graphs** (with directed + bidirected edges) as models of data with latent confounders.

Chen, Dash, Gao '21: MIP formulation & first exact score-based method to find optimal AADMG for continuous Gaussian variables.

Ancestral graphs (AGs)

DAGs are not closed under marginalization!

Ancestral graphs (Richardson and Spirtes '02)

▶ Include all DAGs and are closed under marginalization ▶ Properties: No directed cycles $(a \rightarrow b \rightarrow ... \rightarrow a)$ No almost directed cycles $(a \leftrightarrow b \rightarrow c \rightarrow ... \rightarrow a)$

Learning methods

Constraint-based methods:

► Apply conditional independence test on the data to infer the graph structure: FCI (Sprites et al., '00), cFCI (Ramsey et al., '12)

Score-based methods:

 Optimize a scoring criterion that measures the likelihood of the data: GSMAG (Triantafillou and Tsamardinos, '16)

Hybrid methods:

► Use both a scoring criterion and conditional independence tests: M³HC (Tsirlis et al., '18), SPo (Bernstein et al., '20), CCHM (Chobtham and Constantinou, '20)

Current score-based and hybrid methods are all greedy or local search algorithms!

Scoring a graph

► The BIC score (Schwarz '78) for graph *G* is given by

 $\mathsf{BIC}_{\mathcal{G}} = 2\ln(l_{\mathcal{G}}(\hat{\Sigma})) - \ln(N)(2|V| + |E|)$

► The maximum log-likelihood $\ln(l_{\mathcal{G}}(\hat{\Sigma}))$ can be decomposed by c-components in \mathcal{G} (Nowzohour et al., '17)

$$\begin{aligned} \ln(l_{\mathcal{G}}(\hat{\Sigma})) &= -\frac{N}{2} \sum_{D \in \mathcal{D}} \left[|D| \ln(2\pi) + \log(\frac{|\hat{\Sigma}_{\mathcal{G}_D}|}{\prod_{j \in pa_{\mathcal{G}}(D)} \hat{\sigma}_{Dj}^2}) + \frac{N-1}{N} tr(\hat{\Sigma}_{\mathcal{G}_D}^{-1} S_D - |pa_{\mathcal{G}}(D) \setminus D|) \right] \end{aligned}$$

district = component defined by bidirected edges c-component = district + in-edges per node in district

Decomposition into c-components

c-components

► We obtain a (BIC) score-maximizing ancestral ADMG for a set of continuous variables that follow a multivariate Gaussian distribution.

Score decompositions for BNSL

Score of DAG is sum of scores of "in-stars" (inward directed star)

MIP for score based approach

MIP has one variable per in-star, equations choosing one in-star per node, and *cluster inequalities* preventing cycles.

Opt. formulations

Notation: Node set - $V = \{1, \ldots, n\}$, P(i) = set of parent sets of i.

 $\begin{array}{ll} \text{MIP} & (\text{parent set variables}):\\ \text{max} & \sum_{i \in V} \sum_{P \in P(i)} c_{i,P} z_{i,P} \\ & \sum_{P \in P(i)} z_{i,P} = 1, \ \forall i \in V \\ & \sum_{i \in S, P \cap S = \emptyset} z_{i,P} \geq 1, \ \forall S \subseteq V \ * \\ & z_{i,P} \in \{0,1\} \end{array}$

Jaakkola, Sontag, Globerson, Meila '10: cluster constraints(*) Bartlett, Cussens '13, 17: IP + software (GOBNILP) Grotschel, Junger, Reinelt '85: Acyclic subgraph polytope

Score decomposition for AADMG

Score of AADMG is sum of scores of c-components

Approach

Our work: Learn an AADMG with maximum score from c-components

MIP formulation

Let ${\mathcal C}$ be set of all c-components, and let D(C) be the district of a c-component C.

MIP to find optimal AADMG:

 $\begin{array}{ll} \max & \sum_{c \in \mathcal{C}} s_C z_C \\ & \sum_{C:i \in D(C)} z_C = 1, \ \forall i \in V \\ & G(z) \text{ has no directed and almost directed cycles} \\ & z_C \in \{0,1\} \end{array}$

Cutting planes to avoid cycles

Bicluster inequalities: ($w_{i,j} = \sum_{C:i \leftrightarrow j \in D(C)} z_C$)

$$\sum_{v \in S \setminus \{i,j\}} \sum_{P:P \cap S = \emptyset} z_{v,P} + \sum_{P^1:P^1 \cap S = \emptyset} \sum_{P^2:P^2 \cap S = \emptyset} z_{i,j,P^1,P^2} \ge w_{i,j}$$

Cutting planes generation

► Karger's ('93) random contraction algorithm for min-cut problems: Randomly contract edge ij with probability \propto edge weight

Separation heuristic for cluster inequalities:

- Let $\mu^k(S)$ denote the LHS of the cluster inequality at iteration k and

$$w_{ij}^k = \mu^k(\{i\}) + \mu^k(\{j\}) - \mu^k(\{i,j\}), \; \forall i,j$$

- At iteration k, randomly contract edge ij with probability $\propto w_{ij}^k$
- Remove nodes i and j, create a pseudo-node i' and replace all occurrences of i and j in the original graph by the pseudo-node
- Repeat until $\mu^k(\{i\}) < 1$ for some $i \Rightarrow$ a violated cluster inequality
- Similar separation heuristic for bi-cluster inequalities

Numerical Experiments

• Test set 1:

- 1. Randomly generated DAGs with 20 nodes
- 2. l = 2,4,6 variables set to be latent
- 3. d = remaining observed variables
- 4. A sample of N = 1000/10,000 realizations of observed variables per instance
- Candidate c-components:
 - 1. Single-node districts with up to three parents
 - 2. Two-node districts with up to one parent each node
- Compared methods:
 - 1. AGIP: our IP model
 - 2. DAGIP: our IP model with only single-node districts
 - 3. M³HC: a greedy hybrid method by Tsirlis et al. (2018)
 - 4. FCI: an exact constraint-based method by Sprites et al. (2000)
 - 5. cFCI: an exact constraint-based method by Ramsey et al. (2012)

Quality of formulation

20-node graphs; d = number of observed nodes, l = number of latent variables (removed from graph), N = number of samples.

(d,l,N)	Avg # bin vars before pruning	Avg # bin vars after pruning	Avg pruning time (s)	Avg root gap (%)	Avg soln. time (s)
(18, 2, 1000)	59229	4116	19.1	0.65	60.4
(16, 4, 1000)	39816	3590	13.6	0.43	41.0
(14, 6, 1000)	20671	1788	3.9	0.54	8.9
(18, 2, 10000)	59229	9038	33.0	0.67	323.2
(16, 4, 10000)	39816	7378	21.4	0.53	215.4
(14, 6, 10000)	20671	3786	6.4	0.56	47.2

Comparison with a heuristic method

(d,l,N)	Avg impro compai	ovement in score red with M ³ HC	# AGIP score > DAGIP score		
	AGIP	DAGIP			
(18, 2, 1000)	82.75	82.32	3/10		
(16, 4, 1000)	90.03	89.33	5/10		
(14, 6, 1000)	34.84	34.68	3/10		
(18, 2, 10000)	373.44	373.44	0/10		
(16, 4, 10000)	147.96	147.54	1/10		
(14, 6, 10000)	150.52	150.44	1/10		

Results for varying number of latent vars.

d = 18, l = 2, 4, 6, N = 10,000,

Results on non DAG-representable graphs

d = 10, l = 10, N = 10,000,

Graph index	Avg SHD		Avg precision (%)		Avg recall (%)		# AGIP score > DAGIP score
	AGIP	DAGIP	AGIP	DAGIP	AGIP	DAGIP	
1	6.7	6.6	63.7	59.5	64.4	60.0	10/10
2	9.2	10.5	59.4	50.5	63.0	52.0	7/10
3	8.0	8.8	67.3	64.8	63.8	60.0	5/10
4	29.8	29.8	27.4	29.2	17.6	19.0	4/10
5	21.7	23.0	30.0	27.6	27.3	24.7	2/10
overall	15.1	15.7	49.6	46.3	47.2	43.1	28/50