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Outline

� Bayesian Network Structure Learning

�Modeling Latent Variables

� Integer Programming Formulation to find optimal score

� Numerical Experiments
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Bayesian Network Structure Learning

BayesianNetwork: Directedacyclic graph (DAG) representing conditional
probability relationships between variables.
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P (X1, X2, X3, Xn) = P (X4|X1)P (X3|X1, X2)P (X2|X1)P (X1)

BNSL Problem - Learn DAG from data:
DP methods: Koivisto, Sood ’04, Silander, Myllymäki ’06
A* search: Yuan, Malone ’13
Branch-and-bound: Campos, Ji ’11
IP based solver GOBNILP: Bartlett, Cussens ’13, ’17
GOBNILP is a state-of-the-art method: Malone et. al. ’17
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Causal Bayesian Networks

�GraphicalModelswheredirectededges represent causal relationships� DAG encodes structural equations

Directed Acyclic Graph (Linear) Structural equations

⇔


xA = ϵA
xB = ϵB
xC = bCAxA + bCExE + ϵC
xD = bDBxB + bDExE + ϵD
xE = ϵE

3



Latent Variables

Goal: Learn causal network structures in the presence of latent vars.
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We use ancestral acyclic directed mixed graphs (with directed +
bidirected edges) as models of data with latent confounders.

Chen, Dash, Gao ’21: MIP formulation & first exact score-based
method to find optimal AADMG for continuous Gaussian variables.
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Ancestral graphs (AGs)

� DAGs are not closed under marginalization!

Ancestral graphs (Richardson and Spirtes ’02)

� Include all DAGs and are closed
under marginalization� Properties:
No directed cycles
(a → b → . . . → a)
No almost directed cycles
(a ↔ b → c → . . . → a)
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Learning methods

Constraint-based methods:� Apply conditional independence test on the data to infer the graph
structure: FCI (Sprites et al., ’00), cFCI (Ramsey et al., ’12)

Score-based methods:�Optimize a scoring criterion that measures the likelihood of the data:
GSMAG (Triantafillou and Tsamardinos, ’16)

Hybrid methods:� Use both a scoring criterion and conditional independence tests:
M3HC (Tsirlis et al., ’18), SPo (Bernstein et al., ’20), CCHM (Chobtham
and Constantinou, ’20)

Current score-based and hybrid methods are all greedy or local search
algorithms!
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Scoring a graph

� The BIC score (Schwarz ’78) for graph G is given by

BICG = 2 ln(lG(Σ̂))− ln(N )(2|V | + |E|)

� The maximum log-likelihood ln(lG(Σ̂)) can be decomposed by c-
components in G (Nowzohour et al., ’17)

ln(lG(Σ̂)) = −N

2

∑
D∈D

[
|D| ln(2π) + log(

|Σ̂GD
|∏

j∈paG(D) σ̂
2
Dj

)+

N − 1

N
tr(Σ̂−1

GD
SD − |paG(D) \D|)

]

district = component defined by bidirected edges
c-component = district + in-edges per node in district
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Decomposition into c-components

Ancestral ADMG Districts

c-components

� We obtain a (BIC) score-maximizing ancestral ADMG for a set of
continuous variables that follow a multivariate Gaussian distribution.
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Score decompositions for BNSL

Score of DAG is sum of scores of “in-stars” (inward directed star)
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MIP for score based approach

MIP has one variable per in-star, equations choosing one in-star per
node, and cluster inequalities preventing cycles.
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Opt. formulations

Notation: Node set - V = {1, . . . , n}, P (i) = set of parent sets of i.

MIP (parent set variables):

max
∑
i∈V

∑
P∈P (i)

ci,Pzi,P

∑
P∈P (i)

zi,P = 1, ∀i ∈ V

∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V ∗

zi,P ∈ {0, 1}

Jaakkola, Sontag, Globerson, Meila ’10: cluster constraints(*)
Bartlett, Cussens ’13, 17: IP + software (GOBNILP)
Grotschel, Junger, Reinelt ’85: Acyclic subgraph polytope
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Score decomposition for AADMG

Score of AADMG is sum of scores of c-components
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Approach

Our work: Learn an AADMG with maximum score from c-components
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MIP formulation

Let C be set of all c-components, and let D(C) be the district of a c-
component C.

MIP to find optimal AADMG:

max
∑
c∈C

sCzC∑
C:i∈D(C)

zC = 1, ∀i ∈ V

G(z) has no directed and almost directed cycles
zC ∈ {0, 1}
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Cutting planes to avoid cycles

Cluster Inequalities:∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V
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Bicluster inequalities: (wi,j =
∑

C:i↔j∈D(C) zC)∑
v∈S\{i,j}

∑
P :P∩S=∅

zv,P +
∑

P 1:P 1∩S=∅

∑
P 2:P 2∩S=∅

zi,j,P 1,P 2 ≥ wi,j
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Cutting planes generation

� Karger’s (’93) random contraction algorithm for min-cut problems:
Randomly contract edge ij with probability ∝ edge weight

� Separation heuristic for cluster inequalities:
- Let µk(S) denote the LHS of the cluster inequality at iteration k and

wk
ij = µk({i}) + µk({j})− µk({i, j}), ∀i, j

- At iteration k, randomly contract edge ij with probability ∝ wk
ij

- Remove nodes i and j, create a pseudo-node i′ and replace all
occurrences of i and j in the original graph by the pseudo-node
- Repeat until µk({i}) < 1 for some i⇒ a violated cluster inequality

� Similar separation heuristic for bi-cluster inequalities

16



Numerical Experiments
• Test set 1:

1. Randomly generated DAGs with 20 nodes
2. l = 2,4,6 variables set to be latent
3. d = remaining observed variables
4. A sample of N = 1000/10, 000 realizations of observed variables

per instance

• Candidate c-components:

1. Single-node districts with up to three parents
2. Two-node districts with up to one parent each node

• Compared methods:

1. AGIP: our IP model
2. DAGIP: our IP model with only single-node districts
3. M3HC: a greedy hybrid method by Tsirlis et al. (2018)
4. FCI: an exact constraint-based method by Sprites et al. (2000)
5. cFCI: an exact constraint-based method by Ramsey et al. (2012)
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Quality of formulation

20-node graphs; d = number of observed nodes, l = number of latent
variables (removed from graph),N = number of samples.

(d, l,N )
Avg # bin vars Avg # bin vars Avg pruning Avg root Avg soln.
before pruning after pruning time (s) gap (%) time (s)

(18, 2, 1000) 59229 4116 19.1 0.65 60.4
(16, 4, 1000) 39816 3590 13.6 0.43 41.0
(14, 6, 1000) 20671 1788 3.9 0.54 8.9
(18, 2, 10000) 59229 9038 33.0 0.67 323.2
(16, 4, 10000) 39816 7378 21.4 0.53 215.4
(14, 6, 10000) 20671 3786 6.4 0.56 47.2
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Comparison with a heuristic method

(d, l,N )
Avg improvement in score # AGIP score
compared with M3HC > DAGIP score

AGIP DAGIP
(18, 2, 1000) 82.75 82.32 3/10
(16, 4, 1000) 90.03 89.33 5/10
(14, 6, 1000) 34.84 34.68 3/10
(18, 2, 10000) 373.44 373.44 0/10
(16, 4, 10000) 147.96 147.54 1/10
(14, 6, 10000) 150.52 150.44 1/10
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Results for varying number of latent vars.

d = 18, l = 2, 4, 6,N = 10, 000,
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Results on non DAG-representable graphs

d = 10, l = 10,N = 10, 000,

Graph Avg SHD Avg precision (%) Avg recall (%) # AGIP score
index > DAGIP score

AGIP DAGIP AGIP DAGIP AGIP DAGIP
1 6.7 6.6 63.7 59.5 64.4 60.0 10/10
2 9.2 10.5 59.4 50.5 63.0 52.0 7/10
3 8.0 8.8 67.3 64.8 63.8 60.0 5/10
4 29.8 29.8 27.4 29.2 17.6 19.0 4/10
5 21.7 23.0 30.0 27.6 27.3 24.7 2/10

overall 15.1 15.7 49.6 46.3 47.2 43.1 28/50
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